Analysis of singularities from modulus maxima of complex wavelets

Complex-valued wavelets are normally used to measure instantaneous frequencies, while real wavelets are normally used to detect singularities. We prove that the wavelet modulus maxima with a complex-valued wavelet can detect and characterize singularities. This is an extension of the previous wavelet work of Mallat and Hwang on modulus maxima using a real wavelet. With this extension, we can simultaneously detect instantaneous frequencies and singularities from the wavelet modulus maxima of a complex-valued wavelet. Some results of singularity detection with the modulus maxima from a real wavelet and an analytic complex-valued wavelet are compared. We also demonstrate that singularity detection methods can be employed to detect the corners of a planar object.

[1]  Jean-Pierre Antoine,et al.  Two-dimensional directional wavelets and the scale-angle representation , 1996, Signal Process..

[2]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Stéphane Jaffard Sur la dimension de Hausdorff des points singuliers d'une fonction , 1992 .

[4]  S. Jaffard Pointwise smoothness, two-microlocalization and wavelet coefficients , 1991 .

[5]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[6]  Bruno Torrésani,et al.  Multiridge detection and time-frequency reconstruction , 1999, IEEE Trans. Signal Process..

[7]  P. Tchamitchian,et al.  Regularite locale de la fonction “non-differentiable” de Riemann , 1990 .

[8]  S. Mallat A wavelet tour of signal processing , 1998 .

[9]  MokhtarianFarzin,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992 .

[10]  Wen-Liang Hwang,et al.  Shape from texture: estimation of planar surface orientation through the ridge surfaces of continuous wavelet transform , 1998, IEEE Trans. Image Process..

[11]  J.M. Steele,et al.  Algorithms and complexity for least median of squares regression , 1986, Discret. Appl. Math..

[12]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[13]  Richard Kronland-Martinet,et al.  Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies , 1992, IEEE Trans. Inf. Theory.

[14]  Michael Brady,et al.  The Curvature Primal Sketch , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[16]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[17]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[18]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[19]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[20]  P. Flandrin,et al.  On the Time–Frequency Detection of Chirps1 , 1999 .

[21]  B. Torresani,et al.  Ridge and skeleton extraction from the wavelet transform , 1990 .