Evaluating Computational Models of Vision with Functional Magnetic Resonance Imaging. (Évaluation de modèles computationnels de la vision humaine en imagerie par résonance magnétique fonctionnelle)

Blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) makes it possible to measure brain activity through blood flow to areas with metabolically active neurons. In this thesis we use these measurements to evaluate the capacity of biologically inspired models of vision coming from computer vision to represent image content in a similar way as the human brain. The main vision models used are convolutional networks.Deep neural networks have made unprecedented progress in many fields in recent years. Even strongholds of biological systems such as scene analysis and object detection have been addressed with enormous success. A body of prior work has been able to establish firm links between the first and last layers of deep convolutional nets and brain regions: The first layer and V1 essentially perform edge detection and the last layer as well as inferotemporal cortex permit a linear read-out of object category. In this work we have generalized this correspondence to all intermediate layers of a convolutional net. We found that each layer of a convnet maps to a stage of processing along the ventral stream, following the hierarchy of biological processing: Along the ventral stream we observe a stage-by-stage increase in complexity. Between edge detection and object detection, for the first time we are given a toolbox to study the intermediate processing steps.A preliminary result to this was obtained by studying the response of the visual areas to presentation of visual textures and analysing it using convolutional scattering networks.The other global aspect of this thesis is “decoding” models: In the preceding part, we predicted brain activity from the stimulus presented (this is called “encoding”). Predicting a stimulus from brain activity is the inverse inference mechanism and can be used as an omnibus test for presence of this information in brain signal. Most often generalized linear models such as linear or logistic regression or SVMs are used for this task, giving access to a coefficient vector the same size as a brain sample, which can thus be visualized as a brain map. However, interpretation of these maps is difficult, because the underlying linear system is either ill-defined and ill-conditioned or non-adequately regularized, resulting in non-informative maps. Supposing a sparse and spatially contiguous organization of coefficient maps, we build on the convex penalty consisting of the sum of total variation (TV) seminorm and L1 norm (“TV+L1”) to develop a penalty grouping an activation term with a spatial derivative. This penalty sets most coefficients to zero but permits free smooth variations in active zones, as opposed to TV+L1 which creates flat active zones. This method improves interpretability of brain maps obtained through cross-validation to determine the best hyperparameter.In the context of encoding and decoding models, we also work on improving data preprocessing in order to obtain the best performance. We study the impulse response of the BOLD signal: the hemodynamic response function. To generate activation maps, instead of using a classical linear model with fixed canonical response function, we use a bilinear model with spatially variable hemodynamic response (but fixed across events). We propose an efficient optimization algorithm and show a gain in predictive capacity for encoding and decoding models on different datasets.

[1]  A Watanabe,et al.  Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[3]  Fiona N. Newell,et al.  Vision and touch: Independent or integrated systems for the perception of texture? , 2008, Brain Research.

[4]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[5]  H. Benali,et al.  Robust Bayesian estimation of the hemodynamic response function in event‐related BOLD fMRI using basic physiological information , 2003, Human brain mapping.

[6]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[8]  Fan Li,et al.  Nonparametric inference of the hemodynamic response using multi-subject fMRI data , 2012, NeuroImage.

[9]  Paul J. Laurienti,et al.  The impact of temporal regularization on estimates of the BOLD hemodynamic response function: A comparative analysis , 2008, NeuroImage.

[10]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[11]  J B Poline,et al.  Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution , 2005, IEEE Transactions on Signal Processing.

[12]  Russell A. Poldrack,et al.  Spatiotemporal activity estimation for multivoxel pattern analysis with rapid event-related designs , 2012, NeuroImage.

[13]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[14]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[15]  Lotfi Chaâri,et al.  Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework , 2012, MICCAI.

[16]  Mark W. Woolrich,et al.  Constrained linear basis sets for HRF modelling using Variational Bayes , 2004, NeuroImage.

[17]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[20]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[21]  Dimitris Samaras,et al.  Extracting Brain Regions from Rest fMRI with Total-Variation Constrained Dictionary Learning , 2013, MICCAI.

[22]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[23]  Michael Eickenberg,et al.  HRF Estimation Improves Sensitivity of fMRI Encoding and Decoding Models , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[24]  H. Komatsu,et al.  Image statistics underlying natural texture selectivity of neurons in macaque V4 , 2014, Proceedings of the National Academy of Sciences.

[25]  D. C. Essen,et al.  Neurons in monkey visual area V2 encode combinations of orientations , 2007, Nature Neuroscience.

[26]  Hongtu Zhu,et al.  MULTISCALE ADAPTIVE SMOOTHING MODELS FOR THE HEMODYNAMIC RESPONSE FUNCTION IN FMRI. , 2013, The annals of applied statistics.

[27]  Brian B. Avants,et al.  Predicting Cognitive Data from Medical Images Using Sparse Linear Regression , 2013, IPMI.

[28]  J WainwrightMartin Sharp thresholds for high-dimensional and noisy sparsity recovery using l1-constrained quadratic programming (Lasso) , 2009 .

[29]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[30]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[31]  M. Lindquist,et al.  Validity and power in hemodynamic response modeling: A comparison study and a new approach , 2007, Human brain mapping.

[32]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[33]  Thomas E. Nichols,et al.  Handbook of Functional MRI Data Analysis: Index , 2011 .

[34]  Gaël Varoquaux,et al.  Total Variation Regularization for fMRI-Based Prediction of Behavior , 2011, IEEE Transactions on Medical Imaging.

[35]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[36]  Joan Bruna Scattering Representations for Recognition , 2013 .

[37]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[38]  Fan Li,et al.  A semi-parametric model of the hemodynamic response for multi-subject fMRI data , 2013, NeuroImage.

[39]  Daniel Cremers,et al.  A convex relaxation approach for computing minimal partitions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Alexandre Gramfort,et al.  Mind the duality gap: safer rules for the Lasso , 2015, ICML.

[41]  Luca Baldassarre,et al.  Structured Sparsity Models for Brain Decoding from fMRI Data , 2012, 2012 Second International Workshop on Pattern Recognition in NeuroImaging.

[42]  Guido Gerig,et al.  Optimal Data-Driven Sparse Parameterization of Diffeomorphisms for Population Analysis , 2011, IPMI.

[43]  Jie Wang,et al.  Lasso screening rules via dual polytope projection , 2012, J. Mach. Learn. Res..

[44]  Jean-Baptiste Poline,et al.  Unsupervised robust nonparametric estimation of the hemodynamic response function for any fMRI experiment , 2003, IEEE Transactions on Medical Imaging.

[45]  Daniel L. K. Yamins,et al.  Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition , 2014, PLoS Comput. Biol..

[46]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[47]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[48]  A. Grinvald,et al.  Optical mapping of electrical activity in rat somatosensory and visual cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[50]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[51]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[52]  Maxim Zaitsev,et al.  Combining prospective motion correction and distortion correction for EPI: towards a comprehensive correction of motion and susceptibility-induced artifacts , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[53]  Jonathan S. Cant,et al.  fMR-adaptation reveals separate processing regions for the perception of form and texture in the human ventral stream , 2008, Experimental Brain Research.

[54]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[55]  Martin A. Lindquist,et al.  A hierarchical model for simultaneous detection and estimation in multi-subject fMRI studies , 2014, NeuroImage.

[56]  Masa-aki Sato,et al.  Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns , 2008, NeuroImage.

[57]  Takeshi Norimatsu,et al.  Encoding and Decoding , 2016 .

[58]  Gaël Varoquaux,et al.  Identifying Predictive Regions from fMRI with TV-L1 Prior , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[59]  R. Turner,et al.  Detecting Latency Differences in Event-Related BOLD Responses: Application to Words versus Nonwords and Initial versus Repeated Face Presentations , 2002, NeuroImage.

[60]  B. Julesz Textons, the elements of texture perception, and their interactions , 1981, Nature.

[61]  D. C. Essen,et al.  Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. , 1996, Journal of neurophysiology.

[62]  John Ashburner,et al.  Multivariate decoding of brain images using ordinal regression☆ , 2013, NeuroImage.

[63]  Gaël Varoquaux,et al.  Benchmarking solvers for TV-ℓ1 least-squares and logistic regression in brain imaging , 2014, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[64]  Sabrina M. Tom,et al.  The Neural Basis of Loss Aversion in Decision-Making Under Risk , 2007, Science.

[65]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[67]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[68]  Michael Eickenberg,et al.  Second Order Scattering Descriptors Predict fMRI Activity Due to Visual Textures , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[69]  Russell A. Poldrack,et al.  Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses , 2012, NeuroImage.

[70]  Yaoda Xu,et al.  The Role of Transverse Occipital Sulcus in Scene Perception and Its Relationship to Object Individuation in Inferior Intraparietal Sulcus , 2013, Journal of Cognitive Neuroscience.

[71]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[72]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[73]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[74]  Leslie G. Ungerleider,et al.  Texture segregation in the human visual cortex: A functional MRI study. , 2000, Journal of neurophysiology.

[75]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[76]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[77]  Ulrich Mansmann,et al.  Unconditional Non‐Asymptotic One‐Sided Tests for Independent Binomial Proportions When the Interest Lies in Showing Non‐Inferiority and/or Superiority , 1999 .

[78]  Clifford R. Jack,et al.  Predicting Clinical Scores from Magnetic Resonance Scans in Alzheimer's Disease , 2010, NeuroImage.

[79]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[80]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[81]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[82]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[83]  M. Landy,et al.  Orientation-selective adaptation to first- and second-order patterns in human visual cortex. , 2006, Journal of neurophysiology.

[84]  D. Heeger,et al.  Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1 , 1996, The Journal of Neuroscience.

[85]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[86]  Tom Heskes,et al.  Linear reconstruction of perceived images from human brain activity , 2013, NeuroImage.

[87]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[88]  Mark W. Woolrich,et al.  Bayesian deconvolution fMRI data using bilinear dynamical systems , 2008, NeuroImage.

[89]  Karl J. Friston,et al.  Nonlinear event‐related responses in fMRI , 1998, Magnetic resonance in medicine.

[90]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[91]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[92]  Li Tong,et al.  A Mixed L2 Norm Regularized HRF Estimation Method for Rapid Event-Related fMRI Experiments , 2013, Comput. Math. Methods Medicine.

[93]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[94]  Philippe Ciuciu,et al.  Decoding perceptual thresholds from MEG/EEG , 2014, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[95]  Yann LeCun,et al.  Une procedure d'apprentissage pour reseau a seuil asymmetrique (A learning scheme for asymmetric threshold networks) , 1985 .

[96]  Gaël Varoquaux,et al.  Hemodynamic Estimation Based on Consensus Clustering , 2013, 2013 International Workshop on Pattern Recognition in Neuroimaging.

[97]  Michael S. Landy,et al.  Texture analysis and perception , 2013 .

[98]  Nikolaus Kriegeskorte,et al.  Explaining the hierarchy of visual representational geometries by remixing of features from many computational vision models , 2014 .

[99]  T. Allison,et al.  Electrophysiological Studies of Face Perception in Humans , 1996, Journal of Cognitive Neuroscience.

[100]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[101]  S. Thorpe,et al.  A Limit to the Speed of Processing in Ultra-Rapid Visual Categorization of Novel Natural Scenes , 2001, Journal of Cognitive Neuroscience.

[102]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[104]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[105]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[106]  Ohad Ben-Shahar,et al.  Curvature-based perceptual singularities and texture saliency with early vision mechanisms. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[107]  R. Rifkin,et al.  Notes on Regularized Least Squares , 2007 .

[108]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[109]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[110]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[111]  H. Railo,et al.  Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs , 2012, PloS one.

[112]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[113]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[114]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[115]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[116]  Jean-Baptiste Poline,et al.  The general linear model and fMRI: Does love last forever? , 2012, NeuroImage.

[117]  D C Van Essen,et al.  Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing , 1998, Neuroreport.

[118]  Alison J. Wiggett,et al.  Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. , 2007, Journal of neurophysiology.

[119]  Emmanuel J. Candès,et al.  Signal recovery from random projections , 2005, IS&T/SPIE Electronic Imaging.

[120]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[121]  PortillaJavier,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000 .

[122]  Pradeep Ravikumar,et al.  ENCODING AND DECODING V1 FMRI RESPONSES TO NATURAL IMAGES WITH SPARSE NONPARAMETRIC MODELS. , 2011, The annals of applied statistics.

[123]  Karl J. Friston,et al.  Dynamic discrimination analysis: A spatial–temporal SVM , 2007, NeuroImage.

[124]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[125]  Eero P. Simoncelli,et al.  A functional and perceptual signature of the second visual area in primates , 2013, Nature Neuroscience.

[126]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[127]  Ghassan Hamarneh,et al.  Generalized Sparse Classifiers for Decoding Cognitive States in fMRI , 2010, MLMI.

[128]  A. Thielscher,et al.  Neural mechanisms of cortico–cortical interaction in texture boundary detection: a modeling approach , 2003, Neuroscience.

[129]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[130]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[131]  L. E. Hallum,et al.  Human primary visual cortex (V1) is selective for second-order spatial frequency. , 2011, Journal of neurophysiology.

[132]  Stéphane Mallat,et al.  Group Invariant Scattering , 2011, ArXiv.

[133]  Elizabeth M C Hillman,et al.  Optical brain imaging in vivo: techniques and applications from animal to man. , 2007, Journal of biomedical optics.

[134]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[135]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[136]  Mark D'Esposito,et al.  Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses , 2004, NeuroImage.

[137]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[138]  Leila Montaser-Kouhsari,et al.  Orientation-selective adaptation to illusory contours in human visual cortex. , 2010, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  N. Kanwisher,et al.  The Human Body , 2001 .

[140]  Mark W. Schmidt,et al.  Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.

[141]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[142]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[143]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[144]  Masa-aki Sato,et al.  Visual Image Reconstruction from Human Brain Activity using a Combination of Multiscale Local Image Decoders , 2008, Neuron.

[145]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[146]  P. Ciuciu,et al.  Spatially adaptive mixture modeling for analysis of fMRI time series , 2009, NeuroImage.

[147]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[148]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[149]  H. C. Nothdurft,et al.  Texture segmentation and pop-out from orientation contrast , 1991, Vision Research.

[150]  R. Yuste,et al.  Detecting action potentials in neuronal populations with calcium imaging. , 1999, Methods.

[151]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[152]  Thomas Vincent,et al.  Group-level impacts of within- and between-subject hemodynamic variability in fMRI , 2013, NeuroImage.

[153]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[154]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[155]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[156]  Laurent El Ghaoui,et al.  Safe Feature Elimination in Sparse Supervised Learning , 2010, ArXiv.

[157]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[158]  Leslie G. Ungerleider,et al.  Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys , 1982, Behavioural Brain Research.