Scalable Processing of Context Information with COSMOS

Ubiquitous computing environments are characterised by a high number of heterogeneous devices that generate a huge amount of context data. These data are used to adapt applications to changing execution contexts. However, legacy frameworks fail to process context information in a scalable and efficient manner. In this paper, we propose to organise the classical functionalities of a context manager to introduce a 3-steps cycle of data collection, interpretation, and situation identification. We propose the COSMOS framework, which is based on the concepts of context node and context management policies translated into software components in software architecture. This paper presents COSMOS and evaluates its efficiency throughout the example of the composition of context information to implement a caching/offloading adaptation situation.

[1]  David Garlan,et al.  Context is key , 2005, CACM.

[2]  Bertil Folliot,et al.  A flexible monitoring platform to build cluster management services , 2000, Proceedings IEEE International Conference on Cluster Computing. CLUSTER 2000.

[3]  Thomas Ledoux,et al.  WildCAT: a generic framework for context-aware applications , 2005, MPAC '05.

[4]  Romain Rouvoy,et al.  Using Attribute-Oriented Programming to Leverage Fractal-Based Developments , 2006 .

[5]  Markus Endler,et al.  Middleware: Context Management in Heterogeneous, Evolving Ubiquitous Environments , 2006, IEEE Distributed Systems Online.

[6]  Vivien Quéma,et al.  DREAM: A Component Framework for Constructing Resource-Aware, Configurable Middleware , 2005, IEEE Distributed Syst. Online.

[7]  Yolande Berbers,et al.  Adaptive Context Management Using a Component-Based Approach , 2005, DAIS.

[8]  Nicolas Le Sommer,et al.  Resource management for parallel adaptive components , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[9]  Jadwiga Indulska,et al.  Middleware for Distributed Context-Aware Systems , 2005, OTM Conferences.

[10]  Peter A. Dinda,et al.  Windows Performance Monitoring and Data Reduction Using WatchTower , 2001 .

[11]  Beth A. Schroeder On-Line Monitoring: A Tutorial , 1995, Computer.

[12]  D. L. Parnas,et al.  On the criteria to be used in decomposing systems into modules , 1972, Software Pioneers.

[13]  Emmanuel Cecchet,et al.  Implementing Probes for J2EE Cluster Monitoring , 2005, Stud. Inform. Univ..

[14]  Raymond Cunningham,et al.  MoCoA: Customisable Middleware for Context-Aware Mobile Applications , 2006, OTM Conferences.

[15]  J. Coutaz,et al.  Chapter 2 FOUNDATIONS FOR A THEORY OF CONTEXTORS , 2002 .

[16]  Beth A. Schroeder On-Line Monitoring: , 1995 .

[17]  Curtis Smith High-performance Linux cluster monitoring using Java , 2002 .

[18]  Vivien Quéma,et al.  Dream types: a domain specific type system for component-based message-oriented middleware , 2006 .

[19]  Gregory D. Abowd,et al.  A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications , 2001, Hum. Comput. Interact..

[20]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[21]  Thierry Coupaye,et al.  The FRACTAL component model and its support in Java , 2006, Softw. Pract. Exp..

[22]  Bertil Folliot,et al.  PHOENIX: A Self Adaptable Monitoring Platform for Cluster Management , 2004, Cluster Computing.

[23]  Pierre-Charles David,et al.  Développement de composants Fractal adaptatifs : un langage dédié à l'aspect d'adaptation , 2005 .

[24]  Sandeep K. S. Gupta,et al.  Reconfigurable Context-Sensitive Middleware for Pervasive Computing , 2002, IEEE Pervasive Comput..

[25]  Vivien Quéma,et al.  DREAM: a component framework for the construction of resource-aware, reconfigurable MOMs , 2004, ARM '04.

[26]  Joëlle Coutaz,et al.  Foundations for a Theory of Contextors , 2002, CADUI.

[27]  QuémaVivien,et al.  The FRACTAL component model and its support in Java , 2006 .

[28]  Thierry Coupaye,et al.  The FRACTAL component model and its support in Java: Experiences with Auto-adaptive and Reconfigurable Systems , 2006 .