A Generalized Parallelogram Law
暂无分享,去创建一个
1. D. M. Burton, Elementary Number Theory, 5th ed., McGraw Hill, New York, 2002. 2. E. Z. Chein, An Odd Perfect Number Has At Least Eight Prime Factors, Ph.D. Thesis, Pennsylvania State University, 1979. 3. G. F. Cramer, Extension of a theorem of Servais on perfect numbers, this MONTHLY 48 (1941) 133. 4. P. Hagis, Jr., Outline of a proof that every odd perfect number has at least eight prime factors, Math. Comp. 35 (1980) 1027-1032. 5. B. Peirce, On perfect numbers, New York Math. Diary 2 (13)(1832) 267-277. 6. C1. Servais, Sur les nombres parfaits, Mathesis 8 (1888) 92-93. 7. , Sur les nombres parfaits, Mathesis 8 (1888) 135. 8. J. J. Sylvester, Sur les nombres parfaits, Comptes Rendus CVI (1888) 403-405. 9. , Sur l'impossibilite de l'existence d'un nombre parfait impair qui ne contient pas au moins 5 diviseurs premiers distincts, Comptes Rendus CVI (1888) 522-526.
[1] A. Brøndsted. An Introduction to Convex Polytopes , 1982 .
[2] Gerald J. Porter. k-volume in Rn and the Generalized Pythagorean Theorem , 1996 .