Anisotropic thermo-elasticity in 2D. Part I: A unified treatment
暂无分享,去创建一个
[1] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[2] K. Yagdjian. The Cauchy Problem for Hyperbolic Operators: Multiple Characteristics - Micro-Local Approach , 1997 .
[3] R. Racke. Lectures on nonlinear evolution equations , 1992 .
[4] Ya-Guang Wang. Microlocal analysis in nonlinear thermoelasticity , 2003 .
[5] Tosio Kato. Perturbation theory for linear operators , 1966 .
[6] O. Liess. Decay estimates for the solutions of the system of crystal optics , 1991 .
[7] A new approach to study hyperbolic-parabolic coupled systems , 2003 .
[8] Warren P. Johnson. The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..
[9] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[10] C. Bennett,et al. Interpolation of operators , 1987 .
[11] M. Reissig,et al. Cauchy problems for linear thermoelastic systems of type III in one space variable , 2005 .
[12] P. Brenner. OnLp−Lp′ estimates for the wave-equation , 1975 .
[13] J. C. Peral. Lp estimates for the wave equation , 1980 .
[14] Jens Wirth. Anisotropic thermo-elasticity in 2D. Part II: Applications , 2008, Asymptot. Anal..