Exact confidence regions for species assignment based on DNA markers

Assignment of individuals to correct species or population of origin based on a comparison of allele profiles has in recent years become more accurate due to improvements in DNA marker technology. A method of assessing the error in such assignment problems is presentes. The method is based on the exact hypergeometric distributions of contingency tables conditioned on marginal totals. The result is a confidence region of fixed confidence level. This confidence level is calculable exactly in principle, and estimable very accurately by simulation, without knowledge of the true population allele frequencies. Various properties of these techniques are examined through application to several examples of actual DNA marker data and through simulation studies. Methods which may reduce computation time are discussed and illustrated. Grâce a l'amelioration des techniques de marquage de l'ADN, l'affectation des individus a leur espece ou a leur population d'origine a partir de la comparaison de leurs profils d'alleles a fait des progres significatifs ces dernieres annees. C'est dans ce contexte que l'auteur presente une methode permettant d'evaluer les erreurs d'affectation. Cette technique est basee sur les distributions hypergeometriques exactes des tableaux de frequences, etant donne les marges. Elle produit une region de confiance dont le niveau est fixe. En principe, le niveau de confiance en question peut etre calcule de facon exacte; en pratique, il peut etre estime avec une grande precision au moyen de simulations, meme sans que l'on connaisse la veritable frequence des alleles dans la population. Plusieurs proprietes de ces techniques sont examinees par simulation et au moyen de divers exemples de sequences de marqueurs d'ADN reelles. L'auteur presente et illustre en outre des methodes de reduction du temps de calcul.

[1]  J. Strassmann,et al.  Microsatellites and kinship. , 1993, Trends in ecology & evolution.

[2]  P. Lewis,et al.  Deterministic paternity exclusion using RAPD markers , 1992, Molecular ecology.

[3]  A. Risterucci,et al.  Comparative genetic diversity studies of Theobroma cacao L. using RFLP and RAPD markers , 1994, Heredity.

[4]  Pieter M. Kroonenberg,et al.  A survey of algorithms for exact distributions of test statistics in r × c contingency tables with fixed margins , 1985 .

[5]  A. Agresti [A Survey of Exact Inference for Contingency Tables]: Rejoinder , 1992 .

[6]  W. Powell,et al.  Discriminating between barley genotypes using microsatellite markers. , 1997, Genome.

[7]  M W Bruford,et al.  Microsatellites and their application to population genetic studies. , 1993, Current opinion in genetics & development.

[8]  O. Kamijima,et al.  Use of random amplified polymorphic DNAs(RAPDs)for identification of rice accessions , 1992 .

[9]  J. W. Chapman A Comparison of the X 2, −2 Log R, and Multinomial Probability Criteria for Significance Tests When Expected Frequencies are Small , 1976 .

[10]  D. Roff,et al.  The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. , 1989, Molecular biology and evolution.

[11]  P. Thompson,et al.  Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces , 1997, Molecular ecology.

[12]  M. Nei,et al.  Estimation of average heterozygosity and genetic distance from a small number of individuals. , 1978, Genetics.

[13]  D. Heckel,et al.  Population differentiation in randomly amplified polymorphic DNA of red‐cockaded woodpeckers Picoides borealis , 1994, Molecular ecology.

[14]  Nitin R. Patel,et al.  A Network Algorithm for Performing Fisher's Exact Test in r × c Contingency Tables , 1983 .

[15]  H. Johnson,et al.  A comparison of 'traditional' and multimedia information systems development practices , 2003, Inf. Softw. Technol..

[16]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[17]  Kenneth Lange,et al.  MARKOV CHAINS FOR MONTE CARLO TESTS OF GENETIC EQUILIBRIUM IN MULTIDIMENSIONAL CONTINGENCY TABLES , 1997 .

[18]  K. Abromeit Music Received , 2023, Notes.

[19]  S. Haig,et al.  Population identification of western hemisphere shorebirds throughout the annual cycle , 1997 .

[20]  I. Stirling,et al.  Microsatellite analysis of population structure in Canadian polar bears , 1995, Molecular ecology.

[21]  M. Lynch,et al.  Analysis of population genetic structure with RAPD markers , 1994, Molecular ecology.

[22]  D. Siegmund Sequential Analysis: Tests and Confidence Intervals , 1985 .

[23]  J. Maddox,et al.  Determination of evolutionary relationships among sheep breeds using microsatellites. , 1994, Genomics.

[24]  B. Schierwater,et al.  Applications of random amplified polymorphic DNA (RAPD) in molecular ecology , 1992, Molecular ecology.

[25]  Marcello Pagano,et al.  An Algorithm for Finding the Exact Significance Levels of r × c Contingency Tables , 1981 .

[26]  E. Thompson,et al.  Performing the exact test of Hardy-Weinberg proportion for multiple alleles. , 1992, Biometrics.

[27]  M. Capula Evolutionary genetics of the insular lacertid lizard Podarcis tiliguerta: genetic structure and population heterogeneity in a geographically fragmented species , 1996, Heredity.

[28]  E J Louis,et al.  An exact test for Hardy-Weinberg and multiple alleles. , 1987, Biometrics.