An experimental and analytical investigation of the photo-thermal-electro characteristics of a high power InGaN LED module

[1]  David P. Kennedy,et al.  Spreading Resistance in Cylindrical Semiconductor Devices , 1960 .

[2]  J. P. Holman,et al.  Experimental methods for engineers , 1971 .

[3]  V. Székely,et al.  Fine structure of heat flow path in semiconductor devices: a measurement and identification method , 1988 .

[4]  V. Székely,et al.  A new evaluation method of thermal transient measurement results , 1997 .

[5]  M. Yovanovich,et al.  Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks , 1998 .

[6]  M. Yovanovich,et al.  Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Channels , 1998 .

[7]  M. Yovanovich,et al.  Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels , 2000, Heat Transfer: Volume 4.

[8]  M. Yovanovich Thermal Resistances of Circular Source on Finite Circular Cylinder With Side and End Cooling , 2003 .

[9]  Jean Paul Freyssinier,et al.  Solid-state lighting: failure analysis of white LEDs , 2004 .

[10]  N. Narendran,et al.  Life of LED-based white light sources , 2005, Journal of Display Technology.

[11]  Variation of thermal resistance with input power in LEDs , 2006 .

[12]  Chi-Chuan Wang,et al.  Investigations of the Thermal Spreading Effects of Rectangular Conduction Plates and Vapor Chamber , 2007 .

[13]  Lianqiao Yang,et al.  Electrical, optical and thermal degradation of high power GaN/InGaN light-emitting diodes , 2008 .

[14]  Bin-Juine Huang,et al.  Thermal–electrical–luminous model of multi-chip polychromatic LED luminaire , 2009 .

[16]  Jani Oksanen,et al.  Ultimate limit and temperature dependency of light-emitting diode efficiency , 2009 .

[17]  S. Hui,et al.  A General Photo-Electro-Thermal Theory for Light Emitting Diode (LED) Systems , 2009, IEEE Transactions on Power Electronics.

[18]  S.C. Wang,et al.  Temperature-Dependent Electroluminescence Efficiency in Blue InGaN–GaN Light-Emitting Diodes With Different Well Widths , 2010, IEEE Photonics Technology Letters.

[19]  S.Y.R. Hui,et al.  Comparative Study on the Structural Designs of LED Devices and Systems Based on the General Photo-Electro-Thermal Theory , 2010, IEEE Transactions on Power Electronics.

[20]  Sheng Liu,et al.  Analytical thermal resistances model for eccentric heat source on rectangular plate with convective cooling at upper and lower surfaces , 2011 .

[21]  Gaudenzio Meneghesso,et al.  Chip and package-related degradation of high power white LEDs , 2012, Microelectron. Reliab..

[22]  Samuel Graham,et al.  Development of a thermal resistance model for chip-on-board packaging of high power LED arrays , 2012, Microelectron. Reliab..

[23]  G. P. Peterson,et al.  Comparison and optimization of single-phase liquid cooling devices for the heat dissipation of high-power LED arrays , 2013 .

[24]  Daming Wang,et al.  A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips , 2013 .

[25]  Kai-Shing Yang,et al.  Enhanced cooling for LED lighting using ionic wind , 2013 .

[26]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[27]  Kai-Shing Yang,et al.  An experimental study on the heat dissipation of LED lighting module using metal/carbon foam , 2013 .

[28]  Kai-Shing Yang,et al.  Thermal Spreading Resistance Characteristics of a High Power Light Emitting Diode Module , 2014 .

[29]  Vitor A. F. Costa,et al.  Improved radial heat sink for led lamp cooling , 2014 .

[30]  Paolo Principi,et al.  A comparative life cycle assessment of luminaires for general lighting for the office – compact fluorescent (CFL) vs Light Emitting Diode (LED) – a case study , 2014 .

[31]  S. Hajati,et al.  Reducing thermal contact resistance using nanocoating , 2014 .

[32]  Zongtao Li,et al.  Reconstruction and thermal performance analysis of die-bonding filling states for high-power light-emitting diode devices , 2014 .

[33]  Bin Liu,et al.  A high power LED device with chips directly mounted on heat pipes , 2014 .

[34]  Ming-Tsang Lee,et al.  Heat Transfer Characteristics in High Power LED Packaging , 2014 .

[35]  H. Liem,et al.  Thermal investigation of a high brightness LED array package assembly for various placement algorithms , 2014 .

[36]  M. Devarajan,et al.  Thermal transient evaluation and optical characterization of packaged light-emitting diodes , 2014 .

[37]  Seung Won Jeon,et al.  Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module , 2015 .

[38]  Y. L. Lee,et al.  Development of a heat dissipating LED headlamp with silicone lens to replace halogen bulbs in used cars , 2015 .

[39]  Sang Hun Lee,et al.  Effective heat dissipation and geometric optimization in an LED module with aluminum nitride (AlN) insulation plate , 2015 .

[40]  Tsung-Yi Yang,et al.  A novel flat polymer heat pipe with thermal via for cooling electronic devices , 2015 .

[41]  Jing Wang,et al.  Thermal model design and analysis of the high-power LED automotive headlight cooling device , 2015 .

[42]  T. Jeng,et al.  Experimental study of heat transfer enhancement of inserted LED lamp by the closed-cell aluminum-foam ceiling , 2015 .

[43]  Seung-Jae Park,et al.  Thermal performance improvement of a radial heat sink with a hollow cylinder for LED downlight applications , 2015 .

[44]  Thermal performance of a PCB channel heat sink for LED light bulbs , 2015 .

[45]  The Effect of a Piezoelectric Fan on Forced Air Heat Transfer in a Pin-Fin Heat Sink , 2015 .