inotropic effects on diaphragm channels: + Peptide toxin blockers of voltage-sensitive K

[1]  M. Lemeignan,et al.  Effects of 3,4-diaminopyridine on mechanical and electrical responses of frog single muscle fibres. , 2009, Acta pharmacologica et toxicologica.

[2]  E. van Lunteren,et al.  Effects of DAP on diaphragm force and fatigue, including fatigue due to neurotransmission failure. , 1996, Journal of applied physiology.

[3]  A. Wickenden,et al.  The effects of pharmacological modulation of KATP on the guinea-pig isolated diaphragm. , 1996, European journal of pharmacology.

[4]  E. van Lunteren,et al.  Effect of K+ channel blockade on fatigue in rat diaphragm muscle. , 1995, Journal of applied physiology.

[5]  E. van Lunteren,et al.  Changes in pharyngeal respiratory muscle force produced by K+ channel blockade. , 1995, Respiration physiology.

[6]  C. Benishin,et al.  Inhibition of a K+ current by beta-dendrotoxin in primary and subcultured vascular smooth muscle cells. , 1994, The Journal of pharmacology and experimental therapeutics.

[7]  P. Light,et al.  The effect of glibenclamide on frog skeletal muscle: evidence for K+ATP channel activation during fatigue. , 1994, The Journal of physiology.

[8]  J. H. Collins,et al.  Tityustoxin K alpha blocks voltage-gated noninactivating K+ channels and unblocks inactivating K+ channels blocked by alpha-dendrotoxin in synaptosomes. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Smith,et al.  ATP-sensitive potassium channels and skeletal muscle function in vitro. , 1993, The Journal of pharmacology and experimental therapeutics.

[10]  C. Scholfield,et al.  Action of α‐dendrotoxin on K+ currents in nerve terminal regions of axons in rat olfactory cortex , 1993 .

[11]  J. M. Ritchie,et al.  Two types of 4‐aminopyridine‐sensitive potassium current in rabbit Schwann cells. , 1993, The Journal of physiology.

[12]  E. van Lunteren,et al.  Contractile properties of feline genioglossus, sternohyoid, and sternothyroid muscles. , 1992, Journal of applied physiology.

[13]  W. Fu,et al.  Use of ion channel blockers in studying the regulation of skeletal muscle contractions , 1991, Naunyn-Schmiedeberg's Archives of Pharmacology.

[14]  M. Blaustein,et al.  Polypeptide toxins from the venoms of Old World and New World scorpions preferentially block different potassium channels. , 1991, Molecular Pharmacology.

[15]  E. V. Lunteren,et al.  Contractile and endurance properties of feline triangularis sterni muscle , 1991 .

[16]  N. Standen,et al.  The flickery block of ATP-dependent potassium channels of skeletal muscle by internal 4-aminopyridine , 1991, Pflügers Archiv.

[17]  N. W. Davies,et al.  ATP-dependent potassium channels of muscle cells: Their properties, regulation, and possible functions , 1991, Journal of bioenergetics and biomembranes.

[18]  D. Allen,et al.  Cellular mechanisms of fatigue in skeletal muscle. , 1991, The American journal of physiology.

[19]  G Sjøgaard,et al.  Role of exercise-induced potassium fluxes underlying muscle fatigue: a brief review. , 1991, Canadian journal of physiology and pharmacology.

[20]  S.J. Hong,et al.  Use of geographutoxin II (u‐conotoxin) for the study of neuromuscular transmission in mouse , 1989, British journal of pharmacology.

[21]  M. Blaustein,et al.  Four polypeptide components of green mamba venom selectively block certain potassium channels in rat brain synaptosomes. , 1988, Molecular pharmacology.

[22]  A. Harvey,et al.  Effects of the potassium channel blocking dendrotoxins on acetylcholine release and motor nerve terminal activity , 1988, British journal of pharmacology.

[23]  O. Delbono,et al.  Relation between action potential duration and mechanical activity on rat diaphragm fibers , 1987, Pflügers Archiv - European Journal of Physiology.

[24]  C. Lynch Ionic conductances in frog short skeletal muscle fibres with slow delayed rectifier currents. , 1985, The Journal of physiology.

[25]  H. Nakamura,et al.  Isolation and amino acid compositions of geographutoxin I and II from the marine snailConus geographus Linné , 1983, Experientia.

[26]  A. Harvey,et al.  Dendrotoxin from the venom of the green mamba, Dendroaspis angusticeps , 1980, Naunyn-Schmiedeberg's Archives of Pharmacology.

[27]  F. Joubert,et al.  Snake venoms. The amino acid sequences of two proteinase inhibitor homologues from Dendroaspis angusticeps venom. , 1980, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[28]  K. Edman,et al.  Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle. , 1979, Acta physiologica Scandinavica.

[29]  J. Molgó Voltage-clamp analysis of the sodium and potassium currents in skeletal muscle fibres treated with 4-aminopyridine , 1978, Experientia.

[30]  R. Quinn,et al.  Characterization of the neurotoxic constituents of Conus geographus (L) venom. , 1977, Life sciences.

[31]  G. Ji,et al.  Proceedings: The actions of 4-aminopyridine on the delayed potassium current in skeletal muscle fibres. , 1975 .

[32]  P. Strong Potassium channel toxins. , 1990, Pharmacology & therapeutics.

[33]  J. Halliwell,et al.  Central action of dendrotoxin: selective reduction of a transient K conductance in hippocampus and binding to localized acceptors. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Harvey,et al.  A comparison of the effects of aminopyridines on isolated chicken and rat skeletal muscle preparations. , 1977, Comparative biochemistry and physiology. C: Comparative pharmacology.