Diamond for bio-sensor applications

A summary of photo- and electrochemical surface modifications applied on single-crystalline chemical vapour deposition (CVD) diamond films is given. The covalently bonded formation of amine- and phenyl-linker molecule layers is characterized using x-ray photoelectron spectroscopy, atomic force microscopy (AFM), cyclic voltammetry and field-effect transistor characterization experiments. Amine- and phenyl-layers are very different with respect to formation, growth, thickness and molecule arrangement. We detect a single-molecular layer of amine-linker molecules on diamond with a density of about 1014?cm?2 (10% of carbon bonds). Amine molecules are bonded only on initially H-terminated surface areas to carbon. In the case of electrochemical deposition of phenyl-layers, multi-layer formation is detected due to three-dimensional (3D) growths. This gives rise to the formation of typically 25?? thick layers. The electrochemical grafting of boron-doped diamond works on H-terminated and oxidized surfaces.After reacting such films with hetero-bifunctional crosslinker molecules, thiol-modified ss-DNA markers are bonded to the organic system. Application of fluorescence and AFM on hybridized DNA films shows dense arrangements with densities of up to 1013?cm?2. The DNA is tilted by an angle of about 35? with respect to the diamond surface. Shortening the bonding time of thiol-modified ss-DNA to 10?min causes a decrease of DNA density to about 1012?cm?2. Application of AFM scratching experiments shows threshold removal forces of around 75?nN for DNA bonded on phenyl-linker molecules and of about 45?nN for DNA bonded to amine-linker molecules. DNA sensor applications using Fe(CN6)3?/4? mediator redox molecules, impedance spectroscopy and DNA-field effect transistor devices performances are introduced and discussed.

[1]  B. Rezek,et al.  Photo‐ and electrochemical bonding of DNA to single crystalline CVD diamond , 2006 .

[2]  Saber M Hussain,et al.  Are diamond nanoparticles cytotoxic? , 2007, The journal of physical chemistry. B.

[3]  K. Loh,et al.  Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond. , 2005, The journal of physical chemistry. B.

[4]  J. Pinson,et al.  Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. , 2005, Chemical Society reviews.

[5]  R. Cicero,et al.  Olefin additions on H-Si(111): Evidence for a surface chain reaction initiated at isolated dangling bonds , 2002 .

[6]  Richard B. Jackman,et al.  Diamond-Based Radiation and Photon Detectors , 2004 .

[7]  J. Angus,et al.  Chapter 3 Electrochemistry of diamond , 2004 .

[8]  Lloyd M. Smith,et al.  DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates , 2002, Nature materials.

[9]  H. Mathieu Bioengineered material surfaces for medical applications , 2001 .

[10]  B. Kramer,et al.  Trends in biomarker research for cancer detection. , 2001, The Lancet. Oncology.

[11]  Jillian M Buriak,et al.  Organometallic chemistry on silicon and germanium surfaces. , 2002, Chemical reviews.

[12]  P. Bergveld,et al.  Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface , 1983, IEEE Transactions on Electron Devices.

[13]  Hiroshi Kawarada,et al.  DNA micropatterning on polycrystalline diamond via one-step direct amination. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[14]  G. Swain Chapter 4 Electroanalytical applications of diamond electrodes , 2004 .

[15]  Elizabeth M. Boon,et al.  Single-base mismatch detection based on charge transduction through DNA. , 1999, Nucleic acids research.

[16]  Milos Nesladek,et al.  Growth and properties of nanocrystalline diamond films , 2006 .

[17]  Martin Stutzmann,et al.  Protein-modified nanocrystalline diamond thin films for biosensor applications , 2004, Nature materials.

[18]  B. Rezek,et al.  Electrochemical properties of undoped hydrogen terminated CVD diamond , 2006 .

[19]  Murali Krishna Ghatkesar,et al.  Micromechanical mass sensors for biomolecular detection in a physiological environment. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Gang-yu Liu,et al.  Fabrication of Nanometer Scale Patterns within Self-Assembled Monolayers by Nanografting , 1999 .

[21]  H. Watanabe,et al.  Photochemical attachment of amine linker molecules on hydrogen terminated diamond , 2006 .

[22]  B. Rezek,et al.  Geometric properties of covalently bonded DNA on single-crystalline diamond. , 2006, Journal of the American Chemical Society.

[23]  O. Weis,et al.  Boron-Doped Homoepitaxial Diamond Layers: Fabrication, Characterization, and Electronic Applications , 1996 .

[24]  Peter V. Schwartz,et al.  Meniscus Force Nanografting: Nanoscopic Patterning of DNA , 2001 .

[25]  A. Fujishima,et al.  Homoepitaxial Single-Crystal Boron-Doped Diamond Electrodes for Electroanalysis , 2002 .

[26]  H. Craighead,et al.  Enumeration of DNA molecules bound to a nanomechanical oscillator. , 2005, Nano letters.

[27]  H. Watanabe,et al.  Photochemical amine layer formation on H-terminated single-crystalline CVD diamond , 2007 .

[28]  P. Allongue,et al.  Phenyl layers on H/Si(111) by electrochemical reduction of diazonium salts: monolayer versus multilayer formation , 2003 .

[29]  J. Dougherty,et al.  Immobilization of DNA via oligonucleotides containing an aldehyde or carboxylic acid group at the 5' terminus. , 1987, Nucleic acids research.

[30]  J. Steeds,et al.  Thin film diamond , 1994 .

[31]  A. Zrenner,et al.  Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond , 2004 .

[32]  A. Fujishima,et al.  Band‐Edge Movements of Semiconducting Diamond in Aqueous Electrolyte Induced by Anodic Surface Treatment , 1999 .

[33]  N. Tokuda,et al.  Electrochemical grafting of boron-doped single-crystalline chemical vapor deposition diamond with nitrophenyl molecules. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[34]  H. Kawarada,et al.  Characterization of Direct Immobilized Probe DNA on Partially Functionalized Diamond Solution-Gate Field-Effect Transistors , 2006 .

[35]  H. Okamura,et al.  DNA preservation using diamond chips , 2003 .

[36]  Chikashi Nakamura,et al.  Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness. , 2005, Biochemical and biophysical research communications.

[37]  Amos Breskin,et al.  Effect of moderate heating on the negative electron affinity and photoyield of air-exposed hydrogen-terminated chemical vapor deposited diamond , 2001 .

[38]  Susan R. Mikkelsen,et al.  Covalent immobilization of DNA onto glassy carbon electrodes , 1992 .

[39]  H. Watanabe,et al.  Insulator-metal transition of intrinsic diamond. , 2005, Journal of the American Chemical Society.

[40]  K. V. Ravi,et al.  Resistivity of chemical vapor deposited diamond films , 1989 .

[41]  J. N. Russell,et al.  Molecular and biomolecular monolayers on diamond as an interface to biology , 2005 .

[42]  M. Vaněček,et al.  Chapter 7 Optical properties of CVD diamond , 2003 .

[43]  Masamori Iida,et al.  Formation Mechanism of p-Type Surface Conductive Layer on Deposited Diamond Films , 1995 .

[44]  S. Yamasaki,et al.  Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces , 2005 .

[45]  Xu,et al.  Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes , 2000, Analytical chemistry.

[46]  S. Yamanaka,et al.  High quality homoepitaxial diamond thin film synthesis with high growth rate by a two-step growth method , 1999 .

[47]  Hsiao-Yun Wu,et al.  Characterization and application of single fluorescent nanodiamonds as cellular biomarkers , 2007, Proceedings of the National Academy of Sciences.

[48]  D. Tromson,et al.  Radiation detection devices made from CVD diamond , 2003 .

[49]  P. Bergonzo,et al.  Chapter 6 Diamond-based radiation and photon detectors , 2004 .

[50]  J. N. Russell,et al.  Interfacial electrical properties of DNA-modified diamond thin films: intrinsic response and hybridization-induced field effects. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[51]  S. Kwok,et al.  Nanodiamond as a Possible Carrier of Extended Red Emission , 2005 .

[52]  Y. Pleskov,et al.  Synthetic semiconductor diamond electrodes: The comparative study of the electrochemical behaviour of polycrystalline and single crystal boron-doped films , 1998 .

[53]  Jingbiao Cui,et al.  Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface , 1998 .

[54]  High-Q micromechanical resonators in CH4-reactant-optimized high acoustic velocity CVD polydiam , 2002 .

[55]  Eileen M. Spain,et al.  Orienting DNA helices on gold using applied electric fields , 1998 .

[56]  Takashi Sugino,et al.  Electrical properties of diamond surfaces , 1996 .

[57]  P. Grangier,et al.  Single-photon emission in the near infrared from diamond colour centre , 2005, cond-mat/0509516.

[58]  Yu Ishige,et al.  Immobilization of DNA probes onto gold surface and its application to fully electric detection of DNA hybridization using field-effect transistor sensor , 2006 .

[59]  J. N. Russell,et al.  Photochemical functionalization of hydrogen-terminated diamond surfaces: a structural and mechanistic study. , 2005, The journal of physical chemistry. B.

[60]  Ruth Etzioni,et al.  Early detection: The case for early detection , 2003, Nature Reviews Cancer.

[61]  Lloyd M. Smith,et al.  Synthesis and Characterization of DNA-Modified Silicon (111) Surfaces , 2000 .

[62]  B. Rezek,et al.  Intrinsic hydrogen-terminated diamond as ion-sensitive field effect transistor , 2007 .

[63]  P. J. Dean,et al.  Acceptor-Impurity Infrared Absorption in Semiconducting Synthetic Diamond , 1965 .

[64]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[65]  Michael W Anderson,et al.  Reactions of amines with CVD diamond nanopowders , 2005 .

[66]  Christoph E. Nebel,et al.  Surface electronic properties of H‐terminated diamond in contact with adsorbates and electrolytes , 2006 .

[67]  C. Nebel Electronic properties of CVD diamond , 2003 .

[68]  H. Kawarada,et al.  Surface-modified Diamond Field-effect Transistors for Enzyme-immobilized Biosensors , 2004 .

[69]  Photoluminescence of single colour defects in 50 nm diamond nanocrystals , 2005, cond-mat/0509512.

[70]  J. Kirkham,et al.  Formation of aminosilane-functionalized mica for atomic force microscopy imaging of DNA. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[71]  C. Sander,et al.  Genomic medicine and the future of health care. , 2000, Science.

[72]  Matthew R. Linford,et al.  Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon , 1995 .

[73]  K. Hashimoto,et al.  Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. , 1994, Analytical chemistry.

[74]  H. Okushi High quality homoepitaxial CVD diamond for electronic devices , 2001 .

[75]  J. Angus,et al.  Studies of adsorbate-induced conductance of diamond surfaces , 2005 .

[76]  H. Okushi,et al.  Device grade B-doped homoepitaxial diamond thin films , 2001 .

[77]  Andreas Offenhäusser,et al.  Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices , 2005 .

[78]  H. Okushi,et al.  Homoepitaxial diamond film with an atomically flat surface over a large area , 1999 .

[79]  S R Rasmussen,et al.  Covalent immobilization of DNA onto polystyrene microwells: the molecules are only bound at the 5' end. , 1991, Analytical biochemistry.

[80]  C. Nebel Chapter 6 Transport and defect properties of intrinsic and boron-doped diamond , 2003 .

[81]  Brian H. Houston,et al.  Nanomechanical Resonant Structures in Nanocrystalline Diamond , 2002 .

[82]  Jian Wang,et al.  Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[83]  Dejian Zhou,et al.  Use of Atomic Force Microscopy for Making Addresses in DNA Coatings , 2002 .

[84]  Electronic properties of H-terminated diamond in electrolyte solutions , 2006 .

[85]  H. Olin,et al.  Spatial and Mechanical Properties of Dilute DNA Monolayers on Gold Imaged by AFM , 2003 .

[86]  H. Kawarada,et al.  An electron-spectroscopic view of CVD diamond surface conductivity , 2005 .

[87]  Christoph E. Nebel,et al.  Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA sensing , 2006 .

[88]  Christoph E. Nebel,et al.  Alkene/diamond liquid/solid interface characterization using internal photoemission spectroscopy. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[89]  Greg M. Swain,et al.  Polycrystalline diamond electrodes: basic properties and applications as amperometric detectors in flow injection analysis and liquid chromatography , 1999 .

[90]  Hiroshi Uetsuka,et al.  Diamond and biology , 2007, Journal of The Royal Society Interface.

[91]  E. Petricoin,et al.  Early detection: Proteomic applications for the early detection of cancer , 2003, Nature Reviews Cancer.

[92]  Surface Transfer-Doping of H-Terminated Diamond with Adsorbates , 2005 .

[93]  Yoichiro Sato,et al.  Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films , 1997 .

[94]  F. Cui,et al.  A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films , 2000 .

[95]  R. Jones,et al.  Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces , 2006 .

[96]  L. Tang,et al.  Biocompatibility of chemical-vapour-deposited diamond. , 1995, Biomaterials.

[97]  Hafner,et al.  Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. , 1996, Physical review. B, Condensed matter.

[98]  R. Gittes,et al.  Prostate-specific antigen. , 1987, The New England journal of medicine.