High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts.

We report the fabrication of both n-type and p-type WSe2 field-effect transistors with hexagonal boron nitride passivated channels and ionic-liquid (IL)-gated graphene contacts. Our transport measurements reveal intrinsic channel properties including a metal-insulator transition at a characteristic conductivity close to the quantum conductance e(2)/h, a high ON/OFF ratio of >10(7) at 170 K, and large electron and hole mobility of μ ≈ 200 cm(2) V(-1 )s(-1) at 160 K. Decreasing the temperature to 77 K increases mobility of electrons to ∼330 cm(2) V(-1) s(-1) and that of holes to ∼270 cm(2) V(-1) s(-1). We attribute our ability to observe the intrinsic, phonon-limited conduction in both the electron and hole channels to the drastic reduction of the Schottky barriers between the channel and the graphene contact electrodes using IL gating. We elucidate this process by studying a Schottky diode consisting of a single graphene/WSe2 Schottky junction. Our results indicate the possibility to utilize chemically or electrostatically highly doped graphene for versatile, flexible, and transparent low-resistance ohmic contacts to a wide range of quasi-2D semiconductors.

[1]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[2]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[3]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[4]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[5]  Zhixian Zhou,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[6]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[7]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[8]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[9]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[10]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[12]  Jing Kong,et al.  Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. , 2014, Nature communications.

[13]  Zhixian Zhou,et al.  Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons , 2011 .

[14]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[15]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[16]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[17]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[18]  Hongtao Yuan,et al.  Hydrogenation-induced surface polarity recognition and proton memory behavior at protic-ionic-liquid/oxide electric-double-layer interfaces. , 2010, Journal of the American Chemical Society.

[19]  E. Levashov,et al.  Structure and tribological properties of WSex, WSex/TiN, WSex/TiCN and WSex/TiSiN coatings , 2004 .

[20]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[21]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[22]  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[23]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[24]  K. Tsukagoshi,et al.  Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. , 2013, Nano letters.

[25]  Kinam Kim,et al.  Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier , 2012, Science.

[26]  B. Wees,et al.  A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride , 2011, 1110.1045.

[27]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[28]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[29]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[30]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[31]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[32]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[33]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[34]  Yihong Wu,et al.  Hysteresis of electronic transport in graphene transistors. , 2010, ACS nano.

[35]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[36]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[37]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[38]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[39]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[40]  Kwang S. Kim,et al.  Tuning the graphene work function by electric field effect. , 2009, Nano letters.

[41]  H. Choi,et al.  Graphene versus ohmic metal as source-drain electrode for MoS₂ nanosheet transistor channel. , 2014, Small.

[42]  K. Loh,et al.  Graphene transport at high carrier densities using a polymer electrolyte gate , 2010, 1009.3367.

[43]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[44]  Heung Cho Ko,et al.  Flexible Electronics: Highly Flexible and Transparent Multilayer MoS2 Transistors with Graphene Electrodes (Small 19/2013) , 2013 .

[45]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[46]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[47]  E. Tutuc,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012 .

[48]  T. Taniguchi,et al.  Boron nitride substrates for high mobility chemical vapor deposited graphene , 2011, 1105.4938.

[49]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[50]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[51]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[52]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[53]  Mobility enhancement and highly efficient gating of monolayer MoS 2 transistors with polymer electrolyte , 2012, 1207.4824.