An R || Cmax Quantum Scheduling Algorithm

Grover’s search algorithm can be applied to a wide range of problems; even problems not generally regarded as searching problems, can be reformulated to take advantage of quantum parallelism and entanglement, and lead to algorithms which show a square root speedup over their classical counterparts. In this paper, we discuss a systematic way to formulate such problems and give as an example a quantum scheduling algorithm for an R||Cmax problem. R||Cmax is representative for a class of scheduling problems whose goal is to find a schedule with the shortest completion time in an unrelated parallel machine environment. Given a deadline, or a range of deadlines, the algorithm presented in this paper allows us to determine if a solution to an R||Cmax problem with N jobs and M machines exists, and if so, it provides the schedule. The time complexity of the quantum scheduling algorithm is $${\mathcal{O}(\sqrt{M^N})}$$ while the complexity of its classical counterpart is $${\mathcal{O}(M^N)}$$ .

[1]  P. Høyer Arbitrary phases in quantum amplitude amplification , 2000, quant-ph/0006031.

[2]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[3]  G. Brassard,et al.  Oracle Quantum Computing , 1992, Workshop on Physics and Computation.

[4]  R. Jozsa Entanglement and Quantum Computation , 1997, quant-ph/9707034.

[5]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[6]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[7]  W. Zurek Probabilities from Envariance , 2004 .

[8]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[9]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[10]  Artur Ekert,et al.  Quantum algorithms: entanglement–enhanced information processing , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  R. Feynman Simulating physics with computers , 1999 .

[12]  Seth Lloyd,et al.  Quantum Information Processing , 2009, Encyclopedia of Complexity and Systems Science.

[13]  Alexander Grigoriev,et al.  Unrelated Parallel Machine Scheduling with Resource Dependent Processing Times , 2005, IPCO.

[14]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[15]  Michele Mosca Quantum Algorithms , 2009, Encyclopedia of Complexity and Systems Science.

[16]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[17]  Richard Jozsa,et al.  Illustrating the concept of quantum information , 2003, IBM J. Res. Dev..

[18]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[19]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[20]  Lov K. Grover A framework for fast quantum mechanical algorithms , 1997, STOC '98.

[21]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[22]  Markus Grassl,et al.  Generalized Grover Search Algorithm for Arbitrary Initial Amplitude Distribution , 1998, QCQC.

[23]  P. Shor INTRODUCTION TO QUANTUM ALGORITHMS , 2000, quant-ph/0005003.

[24]  Michele Mosca,et al.  The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.

[25]  Dan C. Marinescu,et al.  Approaching Quantum Computing , 2004 .

[26]  U. Vazirani,et al.  Quantum algorithms and the fourier transform , 2004 .

[27]  J. Carlier,et al.  An algorithm for solving the job-shop problem , 1989 .

[28]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[29]  Richard Jozsa Searching in Grover's Algorithm , 1999 .

[30]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[31]  Phil Gossett Quantum Carry-Save Arithmetic , 1998, quant-ph/9808061.

[32]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[33]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[34]  Peter W. Shor,et al.  Why haven't more quantum algorithms been found? , 2003, JACM.

[35]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  Martin Skutella,et al.  Scheduling Unrelated Machines by Randomized Rounding , 2002, SIAM J. Discret. Math..

[37]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[38]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[39]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[40]  Lov K. Grover,et al.  Fixed-point quantum search. , 2005, Physical review letters.

[41]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[42]  Peter Brucker,et al.  Complexity results for parallel machine problems with a single server , 2002 .