Organic Photovoltaics over Three Decades

The development of organic semiconductors for photovoltaic devices, over the last three decades, has led to unexpected performance for an alternative choice of materials to convert sunlight to electricity. New materials and developed concepts have improved the photovoltage in organic photovoltaic devices, where records are now found above 13% power conversion efficiency in sunlight. The author has stayed with the topic of organic materials for energy conversion and energy storage during these three decades, and makes use of the Hall of Fame now built by Advanced Materials, to present his view of the path travelled over this time, including motivations, personalities, and ambitions.

[1]  O. Inganäs,et al.  Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells , 2018, npj Flexible Electronics.

[2]  R. Friend,et al.  Organic solar cells based on non-fullerene acceptors. , 2018, Nature materials.

[3]  F. Liu,et al.  All‐Polymer Solar Cells Based on a Conjugated Polymer Containing Siloxane‐Functionalized Side Chains with Efficiency over 10% , 2017, Advanced materials.

[4]  René A. J. Janssen,et al.  Sub‐Micrometer Structure Formation during Spin Coating Revealed by Time‐Resolved In Situ Laser and X‐Ray Scattering , 2017 .

[5]  Wei Zhang,et al.  Ternary Organic Solar Cells with Minimum Voltage Losses , 2017 .

[6]  Ole Hagemann,et al.  Overcoming the Scaling Lag for Polymer Solar Cells , 2017 .

[7]  Wei Zhang,et al.  9.0% power conversion efficiency from ternary all-polymer solar cells , 2017 .

[8]  Richard H. Friend,et al.  Understanding Energy Loss in Organic Solar Cells: Toward a New Efficiency Regime , 2017 .

[9]  O. Inganäs,et al.  Multiparameter investigation of bulk heterojunction organic photovoltaics , 2017 .

[10]  H. Yao,et al.  Potential of Nonfullerene Small Molecules with High Photovoltaic Performance. , 2017, Chemistry, an Asian journal.

[11]  Adam P. Willard,et al.  The Enhancement of Interfacial Exciton Dissociation by Energetic Disorder Is a Nonequilibrium Effect , 2017, ACS central science.

[12]  Yang Yang,et al.  Low-bandgap conjugated polymers enabling solution-processable tandem solar cells , 2017 .

[13]  O. Inganäs,et al.  Charge Transport in Pure and Mixed Phases in Organic Solar Cells , 2017 .

[14]  Zhaojun Li,et al.  High‐Performance and Stable All‐Polymer Solar Cells Using Donor and Acceptor Polymers with Complementary Absorption , 2017 .

[15]  Yun Zhang,et al.  Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. , 2017, Journal of the American Chemical Society.

[16]  Fei Huang,et al.  Optimisation of processing solvent and molecular weight for the production of green-solvent-processed all-polymer solar cells with a power conversion efficiency over 9% , 2017 .

[17]  H. Bässler,et al.  Efficient Charge Separation of Cold Charge-Transfer States in Organic Solar Cells Through Incoherent Hopping. , 2017, The journal of physical chemistry letters.

[18]  R. Margolis,et al.  Terawatt-scale photovoltaics: Trajectories and challenges , 2017, Science.

[19]  Seth R. Marder,et al.  Intrinsic non-radiative voltage losses in fullerene-based organic solar cells , 2017, Nature Energy.

[20]  C. J. M. Emmott,et al.  Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. , 2017, Nature materials.

[21]  O. Inganäs,et al.  A fullerene alloy based photovoltaic blend with a glass transition temperature above 200 °C , 2017 .

[22]  O. Inganäs,et al.  LED array scanner for inline characterization of thin film photovoltaic modules , 2016 .

[23]  Long Ye,et al.  Energy‐Level Modulation of Small‐Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells , 2016, Advanced materials.

[24]  R. Friend,et al.  What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends. , 2016, Journal of the American Chemical Society.

[25]  O. Inganäs,et al.  High Performance All-Polymer Solar Cells by Synergistic Effects of Fine-Tuned Crystallinity and Solvent Annealing. , 2016, Journal of the American Chemical Society.

[26]  O. Inganäs,et al.  New method for lateral mapping of bimolecular recombination in thin‐film organic solar cells , 2016 .

[27]  Ghada I. Koleilat,et al.  All-Polymer Solar Cells Employing Non-Halogenated Solvent and Additive , 2016 .

[28]  H. Ade,et al.  Fast charge separation in a non-fullerene organic solar cell with a small driving force , 2016, Nature Energy.

[29]  Feng Gao,et al.  Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability , 2016, Advanced materials.

[30]  O. Inganäs,et al.  Biopolymer hybrid electrodes for scalable electricity storage , 2016 .

[31]  Samantha N. Hood,et al.  Entropy and Disorder Enable Charge Separation in Organic Solar Cells. , 2016, The journal of physical chemistry letters.

[32]  Jianqi Zhang,et al.  All‐Polymer Solar Cells Based on Absorption‐Complementary Polymer Donor and Acceptor with High Power Conversion Efficiency of 8.27% , 2016, Advanced materials.

[33]  O. Inganäs,et al.  Inverted all-polymer solar cells based on a quinoxaline–thiophene/naphthalene-diimide polymer blend improved by annealing , 2016 .

[34]  Ergang Wang,et al.  Open circuit voltage and efficiency in ternary organic photovoltaic blends , 2016 .

[35]  O. Inganäs,et al.  Fully-solution-processed organic solar cells with a highly efficient paper-based light trapping element , 2015 .

[36]  P. Erhart,et al.  High‐Entropy Mixtures of Pristine Fullerenes for Solution‐Processed Transistors and Solar Cells , 2015, Advanced materials.

[37]  O. Inganäs,et al.  Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells , 2015, Nature Communications.

[38]  Samson A Jenekhe,et al.  7.7% Efficient All‐Polymer Solar Cells , 2015, Advanced materials.

[39]  Feng Liu,et al.  Fluoro‐Substituted n‐Type Conjugated Polymers for Additive‐Free All‐Polymer Bulk Heterojunction Solar Cells with High Power Conversion Efficiency of 6.71% , 2015, Advanced materials.

[40]  L. Andersson,et al.  Fully Slot–Die‐Coated All‐Organic Solar Cells , 2015 .

[41]  O. Inganäs,et al.  Temperature dependence of charge carrier generation in organic photovoltaics. , 2015, Physical review letters.

[42]  S. Jenekhe,et al.  n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. , 2015, Journal of the American Chemical Society.

[43]  Weiwei Li,et al.  A real-time study of the benefits of co-solvents in polymer solar cell processing , 2015, Nature Communications.

[44]  Volker Schmidt,et al.  Controlling the Dominant Length Scale of Liquid–Liquid Phase Separation in Spin‐coated Organic Semiconductor Films , 2015 .

[45]  Olle Inganäs,et al.  Light trapping in thin film organic solar cells , 2014 .

[46]  O. Inganäs,et al.  Optical Modeling and Light Management in Organic Photovoltaic Devices , 2014 .

[47]  Daisuke Mori,et al.  Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7% , 2014 .

[48]  F. Gao,et al.  Neat C60:C70 buckminsterfullerene mixtures enhance polymer solar cell performance , 2014 .

[49]  Vidmantas Gulbinas,et al.  Charge carrier generation and transport in different stoichiometry APFO3:PC61BM solar cells. , 2014, Journal of the American Chemical Society.

[50]  O. Inganäs,et al.  Dispersion‐Dominated Photocurrent in Polymer:Fullerene Solar Cells , 2014 .

[51]  V. Sundström,et al.  Charge Carrier Dynamics of Polymer:Fullerene Blends: From Geminate to Non‐Geminate Recombination , 2014 .

[52]  O. Inganäs,et al.  25th Anniversary Article: Organic Photovoltaic Modules and Biopolymer Supercapacitors for Supply of Renewable Electricity: A Perspective from Africa , 2014, Advanced materials.

[53]  R. Friend,et al.  Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes , 2014, Science.

[54]  O. Inganäs,et al.  Light Trapping with Dielectric Scatterers in Single‐ and Tandem‐Junction Organic Solar Cells , 2013 .

[55]  Jin Jang,et al.  Effect of incidence angle and polarization on the optimized layer structure of organic solar cells , 2013 .

[56]  Samson A Jenekhe,et al.  All-polymer solar cells with 3.3% efficiency based on naphthalene diimide-selenophene copolymer acceptor. , 2013, Journal of the American Chemical Society.

[57]  O. Inganäs,et al.  Origin of Reduced Bimolecular Recombination in Blends of Conjugated Polymers and Fullerenes , 2013 .

[58]  P. E. Keivanidis,et al.  Visualizing charge separation in bulk heterojunction organic solar cells , 2013, Nature Communications.

[59]  Scott A. Mauger,et al.  In situ reflectance imaging of organic thin film formation from solution deposition , 2013 .

[60]  Armantas Melianas,et al.  Unified Study of Recombination in Polymer:Fullerene Solar Cells Using Transient Absorption and Charge-Extraction Measurements. , 2013, The journal of physical chemistry letters.

[61]  O. Inganäs,et al.  Conformational Disorder Enhances Solubility and Photovoltaic Performance of a Thiophene–Quinoxaline Copolymer , 2013 .

[62]  Paul Heremans,et al.  Plasmonic Efficiency Enhancement of High Performance Organic Solar Cells with a Nanostructured Rear Electrode , 2013 .

[63]  Robert A. Street,et al.  Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. , 2013, Journal of the American Chemical Society.

[64]  O. Inganäs,et al.  Semi‐Transparent Tandem Organic Solar Cells with 90% Internal Quantum Efficiency , 2012 .

[65]  O. Inganäs,et al.  Light trapping with total internal reflection and transparent electrodes in organic photovoltaic devices , 2012 .

[66]  M. Toney,et al.  Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells , 2012 .

[67]  Mats Andersson,et al.  Quantification of Quantum Efficiency and Energy Losses in Low Bandgap Polymer:Fullerene Solar Cells with High Open‐Circuit Voltage , 2012 .

[68]  V. Sundström,et al.  Ultrafast terahertz photoconductivity of bulk heterojunction materials reveals high carrier mobility up to nanosecond time scale. , 2012, Journal of the American Chemical Society.

[69]  M. Kemerink,et al.  Mechanism for Efficient Photoinduced Charge Separation at Disordered Organic Heterointerfaces , 2012 .

[70]  Grzegorz Milczarek,et al.  Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks , 2012, Science.

[71]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[72]  Eric T. Hoke,et al.  Molecular packing and solar cell performance in blends of polymers with a bisadduct fullerene. , 2012, Nano letters.

[73]  Jungho Kim,et al.  Optical Modeling for Polarization-dependent Optical Power Dissipation of Thin-film Organic Solar Cells at Oblique Incidence , 2012 .

[74]  Olle Inganäs,et al.  Interlayer for Modified Cathode in Highly Efficient Inverted ITO‐Free Organic Solar Cells , 2012, Advanced materials.

[75]  Martin Heeney,et al.  Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells , 2012 .

[76]  B. Gregg Entropy of Charge Separation in Organic Photovoltaic Cells: The Benefit of Higher Dimensionality , 2011 .

[77]  O. Inganäs,et al.  Lateral Phase Separation Gradients in Spin‐Coated Thin Films of High‐Performance Polymer:Fullerene Photovoltaic Blends , 2011 .

[78]  O. Inganäs,et al.  An easily accessible isoindigo-based polymer for high-performance polymer solar cells. , 2011, Journal of the American Chemical Society.

[79]  D. Ginley,et al.  Photoinduced carrier generation and decay dynamics in intercalated and non-intercalated polymer:fullerene bulk heterojunctions. , 2011, ACS nano.

[80]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[81]  Olle Inganäs,et al.  Full day modelling of V-shaped organic solar cell , 2011 .

[82]  O. Inganäs,et al.  An isoindigo-based low band gap polymer for efficient polymer solar cells with high photo-voltage. , 2011, Chemical communications.

[83]  O. Inganäs,et al.  An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells , 2010, Advanced materials.

[84]  V. Sundström,et al.  Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. , 2010, Journal of the American Chemical Society.

[85]  D. Seidel Cinchona Alkaloids in Synthesis & Catalysis: Ligands, Immobilization and Organocatalysis Cinchona Alkaloids in Synthesis & Catalysis: Ligands, Immobilization and Organocatalysis . Edited by Choong Eui Song (Sungkyunkwan University, Suwon, Republik Korea). WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim. , 2010 .

[86]  O. Inganäs,et al.  Polymer Photovoltaics with Alternating Copolymer/Fullerene Blends and Novel Device Architectures , 2010, Advanced materials.

[87]  O. Inganäs,et al.  Charge-Transfer States and Upper Limit of the Open-Circuit Voltage in Polymer:Fullerene Organic Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[88]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[89]  O. Inganäs,et al.  Bipolar Charge Transport in Fullerene Molecules in a Bilayer and Blend of Polyfluorene Copolymer and Fullerene , 2010, Advanced materials.

[90]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[91]  Olle Inganäs,et al.  On the origin of the open-circuit voltage of polymer-fullerene solar cells. , 2009, Nature materials.

[92]  O. Inganäs,et al.  Observation of a Charge Transfer State in Low‐Bandgap Polymer/Fullerene Blend Systems by Photoluminescence and Electroluminescence Studies , 2009 .

[93]  O. Inganäs,et al.  Alternating polyfluorenes collect solar light in polymer photovoltaics. , 2009, Accounts of chemical research.

[94]  Volker Schmidt,et al.  The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. , 2009, Nature materials.

[95]  Zhenan Bao,et al.  Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering , 2009 .

[96]  Jean Manca,et al.  Electroluminescence from charge transfer states in polymer solar cells. , 2009, Journal of the American Chemical Society.

[97]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[98]  M. Andersson,et al.  Synthesis, Characterization, and Devices of a Series of Alternating Copolymers for Solar Cells , 2009 .

[99]  S. H. Park,et al.  Titanium suboxide as an optical spacer in polymer solar cells , 2009 .

[100]  M. Wienk,et al.  Scanning Kelvin Probe Microscopy on Bulk Heterojunction Polymer Blends , 2009 .

[101]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[102]  Wenjing Tian,et al.  Inverted and transparent polymer solar cells prepared with vacuum-free processing , 2009 .

[103]  Olle Inganäs,et al.  Fabrication of a light trapping system for organic solar cells , 2009 .

[104]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[105]  O. Inganäs,et al.  From short to long – Optical and electrical transients in photovoltaic bulk heterojunctions of polyfluorene/fullerenes , 2009 .

[106]  Gijsbertus de With,et al.  Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells. , 2009, Nano letters.

[107]  Adam J. Moulé,et al.  An optical spacer is no panacea for light collection in organic solar cells , 2009 .

[108]  Olle Inganäs,et al.  Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. , 2009, Nano letters.

[109]  Amy M. Ballantyne,et al.  Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends , 2008 .

[110]  Olle Inganäs,et al.  Trapping light with micro lenses in thin film organic photovoltaic cells. , 2008, Optics express.

[111]  Nils-Krister Persson,et al.  Comparative study of organic thin film tandem solar cells in alternative geometries , 2008 .

[112]  O. Inganäs,et al.  High photovoltage achieved in low band gap polymer solar cells by adjusting energy levels of a polymer with the LUMOs of fullerene derivatives , 2008 .

[113]  C. Frisbie,et al.  Correlation of Phase Behavior and Charge Transport in Conjugated Polymer/Fullerene Blends , 2008 .

[114]  Jean Manca,et al.  The Relation Between Open‐Circuit Voltage and the Onset of Photocurrent Generation by Charge‐Transfer Absorption in Polymer : Fullerene Bulk Heterojunction Solar Cells , 2008 .

[115]  O. Inganäs,et al.  Multifolded Polymer Solar Cells on Flexible Substrates , 2008 .

[116]  Stefan C J Meskers,et al.  Compositional and electric field dependence of the dissociation of charge transfer excitons in alternating polyfluorene copolymer/fullerene blends. , 2008, Journal of the American Chemical Society.

[117]  Viktor Andersson,et al.  Optical modeling of a folded organic solar cell , 2008 .

[118]  V. Sundström,et al.  Charge carrier dynamics in alternating polyfluorene copolymer: Fullerene blends probed by terahertz spectroscopy , 2008 .

[119]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[120]  O. Inganäs,et al.  A New Donor–Acceptor–Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility† , 2007 .

[121]  O. Inganäs,et al.  A Conjugated Polymer for Near Infrared Optoelectronic Applications , 2007 .

[122]  Olle Inganäs,et al.  Electrode Grids for ITO Free Organic Photovoltaic Devices , 2007 .

[123]  Viktor Andersson,et al.  Folded reflective tandem polymer solar cell doubles efficiency , 2007 .

[124]  Nils-Krister Persson,et al.  Surface plasmon increase absorption in polymer photovoltaic cells , 2007 .

[125]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[126]  O. Inganäs,et al.  Optical limitations in thin-film low-band-gap polymer/fullerene bulk heterojunction devices , 2007 .

[127]  O. Inganäs,et al.  Stoichiometry, mobility, and performance in bulk heterojunction solar cells , 2007 .

[128]  Uwe Rau,et al.  Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells , 2007 .

[129]  Olle Inganäs,et al.  Enhancing the Photovoltage of Polymer Solar Cells by Using a Modified Cathode , 2007 .

[130]  O. Inganäs,et al.  New low band gap alternating polyfluorene copolymer-based photovoltaic cells , 2007 .

[131]  Olle Inganäs,et al.  Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. , 2007, Journal of the American Chemical Society.

[132]  Alan J. Heeger,et al.  Spatial Fourier‐Transform Analysis of the Morphology of Bulk Heterojunction Materials Used in “Plastic” Solar Cells , 2007 .

[133]  D. Bradley,et al.  Formation of a Ground‐State Charge‐Transfer Complex in Polyfluorene//[6,6]‐Phenyl‐C61 Butyric Acid Methyl Ester (PCBM) Blend Films and Its Role in the Function of Polymer/PCBM Solar Cells , 2007 .

[134]  D. Sharma,et al.  Improvements of fill factor in solar cells based on blends of polyfluorene copolymers as electron donors , 2007 .

[135]  Nils-Krister Persson,et al.  Organic tandem solar cells—modelling and predictions , 2006 .

[136]  Uli Lemmer,et al.  Organic tandem solar cells comprising polymer and small-molecule subcells , 2006 .

[137]  O. Inganäs,et al.  Bipolar transport observed through extraction currents on organic photovoltaic blend materials , 2006 .

[138]  Mm Martijn Wienk,et al.  Solution‐Processed Organic Tandem Solar Cells , 2006 .

[139]  Mats Andersson,et al.  Low‐Bandgap Alternating Fluorene Copolymer/Methanofullerene Heterojunctions in Efficient Near‐Infrared Polymer Solar Cells , 2006 .

[140]  Hans-Jürgen Prall,et al.  Enhanced spectral coverage in tandem organic solar cells , 2006 .

[141]  W. R. Salaneck,et al.  Transparent polymer cathode for organic photovoltaic devices , 2006 .

[142]  V. Sundström,et al.  Charge formation and transport in bulk-heterojunction solar cells based on alternating polyfluorene copolymers blended with fullerenes , 2006 .

[143]  O. Inganäs,et al.  Stoichiometry dependence of charge transport in polymer/methanofullerene and polymer/C70 derivative based solar cells , 2006 .

[144]  O. Inganäs,et al.  Polymer solar cells with low-bandgap polymers blended with C70-derivative give photocurrent at 1 μm , 2006 .

[145]  Stephen R. Forrest,et al.  Semitransparent organic photovoltaic cells , 2006 .

[146]  Mats Andersson,et al.  An alternating low band-gap polyfluorene for optoelectronic devices , 2006 .

[147]  Mats Andersson,et al.  Influence of Solvent Mixing on the Morphology and Performance of Solar Cells Based on Polyfluorene Copolymer/Fullerene Blends , 2006 .

[148]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[149]  O. Inganäs,et al.  Acceptor influence on hole mobility in fullerene blends with alternating copolymers of fluorene , 2006 .

[150]  Gang Li,et al.  Efficient light harvesting in multiple-device stacked structure for polymer solar cells , 2006 .

[151]  L. De Schepper,et al.  Observation of the subgap optical absorption in polymer-fullerene blend solar cells , 2006 .

[152]  Mats Andersson,et al.  A polymer photodiode using vapour-phase polymerized PEDOT as an anode , 2006 .

[153]  O. Inganäs,et al.  Optical properties of low band gap alternating copolyfluorenes for photovoltaic devices. , 2005, The Journal of chemical physics.

[154]  R. Coehoorn,et al.  Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder , 2005 .

[155]  O. Inganäs,et al.  Enhanced Photocurrent Spectral Response in Low‐Bandgap Polyfluorene and C70‐Derivative‐Based Solar Cells , 2005 .

[156]  Valentin D. Mihailetchi,et al.  Device model for the operation of polymer/fullerene bulk heterojunction solar cells , 2005 .

[157]  O. Inganäs,et al.  Modeling electrical transport in blend heterojunction organic solar cells , 2005 .

[158]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[159]  F. Zhang,et al.  Polymer Solar Cells Based on a Low‐Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm , 2005 .

[160]  S. H. Park,et al.  Electroluminescence in polymer-fullerene photovoltaic cells , 2005 .

[161]  N. S. Sariciftci,et al.  Kelvin probe force microscopy study on conjugated polymer/fullerene bulk heterojunction organic solar cells. , 2005, Nano letters.

[162]  O. Inganäs,et al.  Optical optimization of polyfluorene-fullerene blend photodiodes , 2005 .

[163]  P. Blom,et al.  Ambipolar Organic Field‐Effect Transistors Based on a Solution‐Processed Methanofullerene , 2004 .

[164]  Stephen R. Forrest,et al.  Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions , 2004 .

[165]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[166]  O. Inganäs,et al.  Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative , 2004 .

[167]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[168]  D. Vanmaekelbergh,et al.  Wide energy-window view on the density of states and hole mobility in poly(p-phenylene vinylene). , 2004, Physical review letters.

[169]  Valentin D. Mihailetchi,et al.  Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk‐Heterojunction Solar Cells , 2004 .

[170]  O. Inganäs,et al.  Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer , 2004 .

[171]  Mats Andersson,et al.  Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells , 2004 .

[172]  Martin Pfeiffer,et al.  Organic p-i-n solar cells , 2004 .

[173]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[174]  O. Inganäs,et al.  Influence of buffer layers on the performance of polymer solar cells , 2004 .

[175]  T. Nyberg An alternative method to build organic photodiodes , 2004 .

[176]  O. Inganäs,et al.  Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/ fullerene derivative , 2004 .

[177]  J. Hummelen,et al.  Polyfluorene copolymer based bulk heterojunction solar cells , 2004 .

[178]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[179]  Mats Andersson,et al.  High‐Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative , 2003 .

[180]  Paul Heremans,et al.  Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor , 2003 .

[181]  W. Mammo,et al.  Electrochemical bandgaps of substituted polythiophenesElectronic supplementary information (ESI) available: cyclic voltammograms not given within the article. See http://www.rsc.org/suppdata/jm/b3/b301403g/ , 2003 .

[182]  O. Inganäs,et al.  Synthesis and properties of alternating polyfluorene copolymers with redshifted absorption for use in solar cells , 2003 .

[183]  M. Michels,et al.  Understanding the doping dependence of the conductivity of conjugated polymers: Dominant role of the increasing density of states and growing delocalization , 2003 .

[184]  M. Maggini,et al.  A Soluble Donor–Acceptor Double-Cable Polymer: Polythiophene with Pendant Fullerenes , 2003 .

[185]  Olle Inganäs,et al.  Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate) , 2002 .

[186]  N. S. Sariciftci,et al.  Double-cable polymers for fullerene based organic optoelectronic applications , 2002 .

[187]  Mats Andersson,et al.  Polymer Photovoltaic Cells with Conducting Polymer Anodes , 2002 .

[188]  Milan Vanecek,et al.  Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells , 2002 .

[189]  C. Brabec,et al.  Polymer solar cells and infrared light emitting diodes: Dual function low bandgap polymer , 2002 .

[190]  M. Maggini,et al.  Soluble polythiophenes with pendant fullerene groups as double cable materials for photodiodes , 2001 .

[191]  V. Sundström,et al.  Luminescence quenching by inter-chain aggregates in substituted polythiophenes , 2001 .

[192]  C. Brabec,et al.  Origin of the Open Circuit Voltage of Plastic Solar Cells , 2001 .

[193]  M. Leclerc Polyfluorenes: Twenty years of progress , 2001 .

[194]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[195]  V. Sundström,et al.  Intra- and Interchain Luminescence in Amorphous and Semicrystalline Films of Phenyl-Substituted Polythiophene , 2001 .

[196]  Richard H. Friend,et al.  Photovoltaic Performance and Morphology of Polyfluorene Blends: A Combined Microscopic and Photovoltaic Investigation , 2001 .

[197]  L. Pettersson,et al.  Determination of the emission zone in a single-layer polymer light-emitting diode through optical measurements , 2001 .

[198]  Christoph J. Brabec,et al.  Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time , 2001 .

[199]  L. S. Roman,et al.  Quantum efficiency of exciton-to-charge generation in organic photovoltaic devices , 2001 .

[200]  J. Hummelen,et al.  Recent progress in thin film organic photodiodes , 2001 .

[201]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[202]  Mats Andersson,et al.  University of Groningen Polymer photovoltaic devices from stratified multilayers of donor-acceptor blends , 2022 .

[203]  L. S. Roman,et al.  Excitation transfer in polymer photodiodes for enhanced quantum efficiency , 2000 .

[204]  Donal D. C. Bradley,et al.  Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase , 2000 .

[205]  O. Inganäs,et al.  Structural ordering in phenyl-substituted polythiophenes , 2000 .

[206]  L. Pettersson,et al.  Luminescence probing of crystallization in a polymer film , 2000 .

[207]  Mats Andersson,et al.  Ultrafast photogeneration of inter-chain charge pairs in polythiophene films , 2000 .

[208]  Richard H. Friend,et al.  Photodiodes Based on Polyfluorene Composites: Influence of Morphology , 2000 .

[209]  O. Inganäs,et al.  Structural anisotropy of poly(alkylthiophene) films , 2000 .

[210]  Mats Andersson,et al.  Trapping light in polymer photodiodes with soft embossed gratings , 2000 .

[211]  Olle Inganäs,et al.  Patterning of Polymer Light‐Emitting Diodes with Soft Lithography , 2000 .

[212]  D. Moses,et al.  Ultrafast photoinduced charge generation in conjugated polymers , 2000 .

[213]  O. Inganäs,et al.  All-solid-state photoelectrochemical energy conversion with the conjugated polymer poly[3-(4-octylphenyl)-2,2′-bithiophene] , 1999 .

[214]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[215]  L. Pettersson,et al.  Multifunctional polythiophenes in photodiodes , 1999 .

[216]  L. Pettersson,et al.  Enhanced photo conversion efficiency utilizing interference inside organic heteroj unction photovoltaic devices , 1999 .

[217]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[218]  Mats Andersson,et al.  High Quantum Efficiency Polythiophene , 1998 .

[219]  Mats Andersson,et al.  A polythiophene microcavity laser , 1998 .

[220]  O. Inganäs,et al.  Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte , 1998 .

[221]  V. Sundström,et al.  Energy transfer in a conjugated polymer with reduced inter-chain coupling , 1998 .

[222]  Olle Inganäs,et al.  Interference phenomenon determines the color in an organic light emitting diode , 1997 .

[223]  Teketel Yohannes,et al.  Polymer-electrolyte-based photoelectrochemical solar energy conversion with poly(3-methylthiophene) photoactive electrode , 1996 .

[224]  O. Inganäs,et al.  Photoelectrochemical Energy Conversion at the Conjugated Polymer/Redox Polymer Electrolyte Interface , 1996 .

[225]  Daniel Moses,et al.  Subpicosecond photoinduced electron transfer from conjugated polymers to functionalized fullerenes , 1996 .

[226]  Göran Gustafsson,et al.  Electroluminescence from Substituted Poly(thiophenes) : From Blue to Near-Infrared , 1995 .

[227]  Alan J. Heeger,et al.  Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions , 1995 .

[228]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[229]  M. Berggren,et al.  Micrometer- and Nanometer-Sized Polymeric Light-Emitting Diodes , 1995, Science.

[230]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[231]  Göran Gustafsson,et al.  White light from an electroluminescent diode made from poly[3(4‐octylphenyl)‐2,2′‐bithiophene] and an oxadiazole derivative , 1994 .

[232]  G. Gustafsson,et al.  Light-emitting diodes with variable colours from polymer blends , 1994, Nature.

[233]  Wu,et al.  Photoexcitation spectroscopy of conducting-polymer-C60 composites: Photoinduced electron transfer. , 1993, Physical review. B, Condensed matter.

[234]  David Braun,et al.  Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells , 1993 .

[235]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[236]  Shigenori Morita,et al.  Doping effect of buckminsterfullerene in conducting polymer: Change of absorption spectrum and quenching of luminescene , 1992 .

[237]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[238]  John Lekner,et al.  Reflection and refraction by uniaxial crystals , 1991 .

[239]  G. Gustafsson,et al.  Melt processable polymer electronics , 1991 .

[240]  Hiroshi Fujiwara,et al.  Three‐layered organic solar cell with a photoactive interlayer of codeposited pigments , 1991 .

[241]  G. Gustafsson,et al.  Rectifying metal‐polymer contacts formed by melt processing , 1990 .

[242]  Magnus Willander,et al.  Field‐effect mobility of poly(3‐hexylthiophene) , 1988 .

[243]  W. R. Salaneck,et al.  Thermochromic and solvatochromic effects in poly(3-hexylthiophene) , 1988 .

[244]  Z. Soos,et al.  Absorption spectrum of flexible conjugated polymers: the weak-disorder limit , 1987 .

[245]  B. Harbecke,et al.  Coherent and incoherent reflection and transmission of multilayer structures , 1986 .

[246]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[247]  Charles L. Braun,et al.  Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production , 1984 .

[248]  J. Kanicki,et al.  Electrical and photovoltaic properties of trans-polyacetylene , 1984 .

[249]  D. Pai Organic photoconductors in electrophotography , 1983 .

[250]  I. Lundström,et al.  Photoelectrochemistry of microcrystalline chlorophyll a films , 1983 .

[251]  I. Lundström,et al.  Charge transport in microcrystalline chlorophyll-a: Temperature dependence and gas effects , 1981 .

[252]  M. Grätzel,et al.  Hydrogen evolution from water induced by visible light mediated by redox catalysis , 1979, Nature.

[253]  Pochi Yeh,et al.  Electromagnetic propagation in birefringent layered media , 1979 .

[254]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[255]  H. Hovel,et al.  Organic solar cells of hydroxy squarylium , 1976 .

[256]  C. Tang,et al.  Transient photovoltaic effects in metal-chlorophyll-a-metal sandwich cells , 1975 .

[257]  A. C. Albrecht,et al.  Chlorophyll-a photovoltaic cells , 1975, Nature.

[258]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[259]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[260]  R. T. Ross,et al.  Thermodynamics of light emission and free-energy storage in photosynthesis. , 1967, Biophysical journal.

[261]  Y. Pleskov,et al.  THE ELECTROCHEMISTRY OF SEMICONDUCTORS , 1963 .

[262]  P. J. Holmes,et al.  The Electrochemistry of Semiconductors , 1962 .

[263]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[264]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[265]  C. E. Fritts On a new form of selenium cell, and some electrical discoveries made by its use , 1883, American Journal of Science.

[266]  O. Inganäs,et al.  Structure–property relationships of oligothiophene–isoindigo polymers for efficient bulk-heterojunction solar cells , 2014 .

[267]  O. Inganäs,et al.  Mixed solvents for reproducible photovoltaic bulk heterojunctions , 2011 .

[268]  D. Godovsky,et al.  Modeling the ultimate efficiency of polymer solar cell using Marcus theory of electron transfer , 2011 .

[269]  Jae Kwan Lee,et al.  "Columnlike" structure of the cross-sectional morphology of bulk heterojunction materials. , 2009, Nano letters.

[270]  K. Haenen,et al.  Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy , 2005 .

[271]  O. Inganäs,et al.  Organic Photodiodes: From Diodes to Blends , 2003 .

[272]  M. Maggini,et al.  A novel polythiophene with pendant fullerenes: toward donor/acceptor double-cable polymers , 2000 .

[273]  Mats Andersson,et al.  Substituted polythiophenes designed for optoelectronic devices and conductors , 1999 .

[274]  M. Andersson,et al.  Photodiode performance and nanostructure of polythiophene/C60 blends , 1997 .

[275]  H. Bässler Charge Transport in Disordered Organic Photoconductors a Monte Carlo Simulation Study , 1993 .

[276]  A. Heeger,et al.  Polyacetylene, (CH)x: Photoelectrochemical solar cell , 1980 .