Finding Maximum Colorful Subtrees in Practice

In metabolomics and other fields dealing with small compounds, mass spectrometry is applied as a sensitive high-throughput technique. Recently, fragmentation trees have been proposed to automatically analyze the fragmentation mass spectra recorded by such instruments. Computationally, this leads to the problem of finding a maximum weight subtree in an edge-weighted and vertex-colored graph, such that every color appears, at most once in the solution. We introduce new heuristics and an exact algorithm for this Maximum Colorful Subtree problem and evaluate them against existing algorithms on real-world and artificial datasets. Our tree completion heuristic consistently scores better than other heuristics, while the integer programming-based algorithm produces optimal trees with modest running times. Our fast and accurate heuristic can help determine molecular formulas based on fragmentation trees. On the other hand, optimal trees from the integer linear program are useful if structure is relevant, for example for tree alignments.

[1]  R. Schuhmacher,et al.  On the inter-instrument and inter-laboratory transferability of a tandem mass spectral reference library: 1. Results of an Austrian multicenter study. , 2009, Journal of mass spectrometry : JMS.

[2]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[3]  Florian Rasche,et al.  Computing Fragmentation Trees from Metabolite Multiple Mass Spectrometry Data , 2011, RECOMB.

[4]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[5]  Florian Rasche,et al.  De novo analysis of electron impact mass spectra using fragmentation trees. , 2012, Analytica chimica acta.

[6]  A. Fernie,et al.  Metabolite profiling: from diagnostics to systems biology , 2004, Nature Reviews Molecular Cell Biology.

[7]  J. Vederas,et al.  [Drug discovery and natural products: end of era or an endless frontier?]. , 2011, Biomeditsinskaia khimiia.

[8]  R. Friedman,et al.  Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. , 2008, Analytical chemistry.

[9]  Florian Rasche,et al.  Computing fragmentation trees from tandem mass spectrometry data. , 2011, Analytical chemistry.

[10]  Thomas Zichner,et al.  Identifying the unknowns by aligning fragmentation trees. , 2012, Analytical chemistry.

[11]  Matteo Fischetti,et al.  Solving the Prize-Collecting Steiner Tree Problem to Optimality , 2005, ALENEX/ANALCO.

[12]  Riccardo Dondi,et al.  Maximum Motif Problem in Vertex-Colored Graphs , 2009, CPM.

[13]  Rolf Niedermeier,et al.  On The Parameterized Intractability Of Motif Search Problems* , 2002, Comb..

[14]  Markus Chimani,et al.  Fast alignment of fragmentation trees , 2012, Bioinform..

[15]  Florian Rasche,et al.  Towards de novo identification of metabolites by analyzing tandem mass spectra , 2008, ECCB.

[16]  Sylvain Guillemot,et al.  Finding and Counting Vertex-Colored Subtrees , 2010, Algorithmica.

[17]  Florian Sikora,et al.  Aspects algorithmiques de la comparaison d'éléments biologiques. (Algorithmics aspects of biological entities comparison) , 2011 .

[18]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.