Characterizing TW Hydra
暂无分享,去创建一个
Daniel T. Jaffe | Gregory N. Mace | Jae-Joon Lee | Heeyoung Oh | Benjamin T. Kidder | G. Mace | D. Jaffe | B. Kidder | Hwihyun Kim | Hwihyun Kim | C. Deen | K. Sokal | Kimberly R. Sokal | Casey P. Deen | Heeyoung Oh | Jaejoon Lee
[1] L. Hillenbrand,et al. AN OPTICAL SPECTROSCOPIC STUDY OF T TAURI STARS. I. PHOTOSPHERIC PROPERTIES , 2014, 1403.1675.
[2] T. Barman,et al. PHYSICAL PROPERTIES OF YOUNG BROWN DWARFS AND VERY LOW MASS STARS INFERRED FROM HIGH-RESOLUTION MODEL SPECTRA , 2009, 0911.3844.
[3] M. Schwartz,et al. Discovery of Seven T Tauri Stars and a Brown Dwarf Candidatein the Nearby TW Hydrae Association , 1998, astro-ph/9812189.
[4] L. Hartmann,et al. The Initial Mass Function in the Taurus Star-forming Region , 2002 .
[5] A. Boss,et al. NEW PARALLAXES AND A CONVERGENCE ANALYSIS FOR THE TW Hya ASSOCIATION , 2016, 1610.01667.
[6] L. Testi,et al. A photoevaporative gap in the closest planet-forming disc , 2016, 1609.03903.
[7] L. Testi,et al. An extensive VLT/X-shooter library of photospheric templates of pre-main sequence stars , 2017, 1705.10075.
[8] A. Boss,et al. DISTANCE AND KINEMATICS OF THE TW HYDRAE ASSOCIATION FROM PARALLAXES , 2012, 1211.2233.
[9] W. Vacca,et al. NEAR-INFRARED SPECTROSCOPY OF TW Hya: A REVISED SPECTRAL TYPE AND COMPARISON WITH MAGNETOSPHERIC ACCRETION MODELS , 2011, 1102.0535.
[10] S. Alencar,et al. Variability of Southern T Tauri Stars. II. The Spectral Variability of the Classical T Tauri Star TW Hydrae , 2002 .
[11] W. Vacca,et al. Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 ATMOSPHERIC PARAMETERS OF FIELD L AND T DWARFS 1 , 2022 .
[12] Kjell Eriksson,et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.
[13] C. Deen. MODIFICATION OF THE MOOG SPECTRAL SYNTHESIS CODES TO ACCOUNT FOR ZEEMAN BROADENING OF SPECTRAL LINES , 2013, 1306.6625.
[14] Observatoire de la Côte d'Azur,et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.
[15] Evidence for J- and H-band excess in classical T Tauri stars and the implications for disk structure and estimated ages , 2005, astro-ph/0509036.
[16] Measuring Fundamental Parameters of Substellar Objects. I. Surface Gravities , 2004, astro-ph/0403265.
[17] Geoffrey A. Blake,et al. An old disk still capable of forming a planetary system , 2013, Nature.
[18] D. Padgett,et al. THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.
[19] L. Testi,et al. X-shooter spectroscopy of young stellar objects - III. Photospheric and chromospheric properties of Class III objects , 2013 .
[20] J. Valenti,et al. Measuring the Magnetic Field of the Classical T Tauri Star TW Hydrae , 2005, astro-ph/0509549.
[21] Jeong-Yeol Han,et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer) , 2014, Astronomical Telescopes and Instrumentation.
[22] Paul M. Brunet,et al. The Gaia mission , 2013, 1303.0303.
[23] Julien H. Girard,et al. Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE , 2016, 1610.08939.
[24] F. Allard,et al. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.
[25] A. J. Weinberger,et al. THE 0.5–2.22 μm SCATTERED LIGHT SPECTRUM OF THE DISK AROUND TW Hya: DETECTION OF A PARTIALLY FILLED DISK GAP AT 80 AU , 2013, 1306.2969.
[26] D. James,et al. Chemical abundances in six nearby star-forming regions. Implications for galactic evolution and plan , 2008, 0801.2529.
[27] John T. Rayner,et al. SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .
[28] D. Padgett. Atmospheric Parameters and Iron Abundances of Low-Mass Pre-Main-Sequence Stars in Nearby Star Formation Regions , 1996 .
[29] J. Najita,et al. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars , 2017, 1701.06758.
[30] W. Cochran,et al. Kea: A New Tool to Obtain Stellar Parameters from Low to Moderate Signal-to-noise and High-resolution Echelle Spectra , 2016, 1604.08170.
[31] Luca Ricci,et al. RINGED SUBSTRUCTURE AND A GAP AT 1 au IN THE NEAREST PROTOPLANETARY DISK , 2016, 1603.09352.
[32] K. Covey,et al. FIRST MAGNETIC FIELD DETECTION ON A CLASS I PROTOSTAR , 2009, 0905.4784.
[33] D. Queloz,et al. TW Hydrae: evidence of stellar spots instead of a Hot Jupiter , 2008, 0808.2386.
[34] In-Soo Yuk,et al. 300 nights of science with IGRINS at McDonald Observatory , 2016, Astronomical Telescopes + Instrumentation.
[35] D. Broguiere,et al. THE 2014 ALMA LONG BASELINE CAMPAIGN: FIRST RESULTS FROM HIGH ANGULAR RESOLUTION OBSERVATIONS TOWARD THE HL TAU REGION , 2015 .
[36] Charles J. Lada,et al. THE AGE, STELLAR CONTENT, AND STAR FORMATION TIMESCALE OF THE B59 DENSE CORE , 2010, 1007.2192.
[37] Jonathan P. Williams,et al. Protoplanetary Disks and Their Evolution , 2011, 1103.0556.
[38] S. Ida,et al. A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya , 2016, 1605.00289.
[39] D. T. Jaffe,et al. A Spectroscopic Technique for Measuring Stellar Properties of Pre-Main-Sequence Stars , 2003, astro-ph/0308521.
[40] A. Krone-Martins,et al. The TW Hydrae association: trigonometric parallaxes and kinematic analysis ? , 2014, 1401.1935.
[41] R. Doyon,et al. BANYAN. IV. FUNDAMENTAL PARAMETERS OF LOW-MASS STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS—ISOCHRONAL AGE DETERMINATION USING MAGNETIC EVOLUTIONARY MODELS , 2014, 1406.6750.
[42] Konstantin Grankin,et al. Placing the Spotted T Tauri Star LkCa 4 on an HR Diagram , 2017, 1701.06703.