Hybrid Parallel Computation for Sparse Network Component Analysis

The gene regulatory network analysis primary goal is understanding the gene interactions topological order and how the genes influence each other. Network component analysis is a vital technique for build gene regulatory network. However, the network component analysis technique is time consuming and computational intensive. Therefore, parallel techniques are required. PSparseNCA is a parallel network component algorithm. This work present an improved version of PSparseNCA, referred as hPSparseNCA (Hybrid Parallel Computation for Sparse Network Component Analysis). hPSparseNCA uses the hybrid computational model to enhance the performance of PSparseNCA. hPSparseNCA is outperformed PSparseNCA achieving speedup reached 192.77 instead of 36.03 for PSparseNCA on 40 processing nodes. Furthermore, the speedup of the proposed algorithm reached 728.48 when running on 256 processing nodes.

[1]  Bertram Klinger,et al.  Reverse engineering gene regulatory networks by modular response analysis - a benchmark. , 2018, Essays in biochemistry.

[2]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[3]  Radu Prodan,et al.  Superlinear speedup in HPC systems: Why and when? , 2016, 2016 Federated Conference on Computer Science and Information Systems (FedCSIS).

[4]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[5]  Aitzaz Ahmad,et al.  SparseNCA: Sparse Network Component Analysis for Recovering Transcription Factor Activities with Incomplete Prior Information , 2018, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[6]  Naresh Doni Jayavelu,et al.  Iterative sub-network component analysis enables reconstruction of large scale genetic networks , 2015, BMC Bioinformatics.

[7]  Christian L. Müller,et al.  Fused Regression for Multi-source Gene Regulatory Network Inference , 2016, bioRxiv.

[8]  Mohamed F. Tolba,et al.  Parallel Computation for Sparse Network Component Analysis , 2019, AMLTA.

[9]  Chiara Sabatti,et al.  Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  M. J. Hatcher,et al.  Modeling Biological Systems: Principles and Applications , 1997 .

[11]  Xing-Ming Zhao,et al.  Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information , 2012, Bioinform..

[12]  K. Kinzler,et al.  Serial Analysis of Gene Expression , 1995, Science.

[13]  Andrea Califano,et al.  ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information , 2016, Bioinform..

[14]  Joshua M. Stuart,et al.  MICROARRAY EXPERIMENTS : APPLICATION TO SPORULATION TIME SERIES , 1999 .

[15]  Miriam Perkins,et al.  Visualizing Dynamic Gene Interactions to Reverse Engineer Gene Regulatory Networks Using Topological Data Analysis , 2017, 2017 21st International Conference Information Visualisation (IV).

[16]  Ali Reza Khanteymoori,et al.  A robust gene regulatory network inference method base on Kalman filter and linear regression , 2018, PloS one.

[17]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[18]  Juan Liu,et al.  Local network component analysis for quantifying transcription factor activities. , 2017, Methods.

[19]  Yung-Keun Kwon,et al.  A novel mutual information-based Boolean network inference method from time-series gene expression data , 2017, PloS one.

[20]  Andrew William Dowsey,et al.  High-throughput image analysis for proteomics , 2005 .

[21]  Dan V. Nicolau,et al.  Microarray technology and its applications , 2005 .

[22]  Srinivas Aluru,et al.  Handbook Of Computational Molecular Biology , 2010 .

[23]  Marlon E. Pierce,et al.  BioVLAB-Microarray: Microarray Data Analysis in Virtual Environment , 2008, 2008 IEEE Fourth International Conference on eScience.

[24]  Wolfram Liebermeister,et al.  Linear modes of gene expression determined by independent component analysis , 2002, Bioinform..

[25]  Jeanne M O Eloundou-Mbebi,et al.  Gene regulatory network inference using fused LASSO on multiple data sets , 2016, Scientific Reports.

[26]  Neal S. Holter,et al.  Fundamental patterns underlying gene expression profiles: simplicity from complexity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Zhi Ding,et al.  Fast network component analysis (FastNCA) for gene regulatory network reconstruction from microarray data , 2008, Bioinform..

[28]  D. Shortle,et al.  Prediction of protein structure , 2000, Current Biology.

[29]  Julio R. Banga,et al.  Reverse engineering and identification in systems biology: strategies, perspectives and challenges , 2014, Journal of The Royal Society Interface.

[30]  F. Real,et al.  Comparative analysis of mutations in the p53 and K‐ras genes in pancreatic cancer , 1994, International journal of cancer.

[31]  Carlos H. A. Higa,et al.  Reverse Engineering of Gene Regulatory Networks Combining Dynamic Bayesian Networks and Prior Biological Knowledge , 2018, ICCSA.

[32]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[33]  E. Oja,et al.  Independent Component Analysis , 2013 .

[34]  Hazem N. Nounou,et al.  ROBNCA: Robust Network Component Analysis for recovering transcription factor activities , 2013, 2013 IEEE International Workshop on Genomic Signal Processing and Statistics.

[35]  Sean R. Eddy,et al.  Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids , 1998 .

[36]  Mohamed F. Tolba,et al.  PFastNCA: Parallel Fast Network Component Analysis for Gene Regulatory Network , 2018, AMLTA.

[37]  M. Sternberg,et al.  Enhanced genome annotation using structural profiles in the program 3D-PSSM. , 2000, Journal of molecular biology.

[38]  D. T. Jones,et al.  Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum , 1988, Journal of bacteriology.

[39]  Zhi-Ping Liu,et al.  Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data , 2015, Current genomics.

[40]  Yanyuan Ma,et al.  A Predictive Based Regression Algorithm for Gene Network Selection , 2016, Front. Genet..

[41]  Gabriele Sales,et al.  parmigene - a parallel R package for mutual information estimation and gene network reconstruction , 2011, Bioinform..