Evaluation of thermotolerant and ethanol-tolerant Saccharomyces cerevisiae as an alternative strain for bioethanol production from industrial feedstocks

[1]  A. Chandel,et al.  Kluyveromyces marxianus: a potential biocatalyst of renewable chemicals and lignocellulosic ethanol production , 2021, Critical reviews in biotechnology.

[2]  Yue-qin Tang,et al.  Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization , 2021 .

[3]  R. Giudici,et al.  Physiological characterization of a new thermotolerant yeast strain isolated during Brazilian ethanol production, and its application in high-temperature fermentation , 2020, Biotechnology for Biofuels.

[4]  Rutjaya Prateep Na Talang,et al.  Environmental impacts and economic benefits of different wastewater management schemes for molasses-based ethanol production: A case study of Thailand , 2020 .

[5]  W. V. van Zyl,et al.  Exploring industrial and natural Saccharomyces cerevisiae strains for the bio-based economy from biomass: the case of bioethanol , 2019, Critical reviews in biotechnology.

[6]  M. Yamada,et al.  Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement , 2019, Antonie van Leeuwenhoek.

[7]  Keyla Tortoló Cabañas,et al.  Selection of Saccharomyces cerevisiae isolates for ethanol production in the presence of inhibitors , 2019, 3 Biotech.

[8]  S. Vij,et al.  Response and tolerance of yeast to changing environmental stress during ethanol fermentation , 2018, Process Biochemistry.

[9]  J. Domínguez,et al.  Effect of carbon sources on the growth and ethanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice , 2017, Bioprocess and Biosystems Engineering.

[10]  P. Thanonkeo,et al.  High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion , 2017, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[11]  Siti Azmah Jambo,et al.  Yeasts in sustainable bioethanol production: A review , 2017, Biochemistry and biophysics reports.

[12]  C. Boonchird,et al.  Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation , 2016, AMB Express.

[13]  N. El-Gendy,et al.  Response Surface Optimization of Bioethanol Production from Sugarcane Molasses by Pichia veronae Strain HSC-22 , 2015, Biotechnology research international.

[14]  R. Arora,et al.  Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective , 2015 .

[15]  K. Verstrepen,et al.  Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production , 2014, Applied Microbiology and Biotechnology.

[16]  T. Dethoup,et al.  Ethanol production from cassava using a newly isolated thermotolerant yeast strain. , 2014 .

[17]  A. K. Gombert,et al.  Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry , 2013, Antonie van Leeuwenhoek.

[18]  A. K. Gombert,et al.  Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry , 2013, Antonie van Leeuwenhoek.

[19]  Chi-yang Yu,et al.  Production of Bioethanol from Carrot Pomace Using the Thermotolerant Yeast Kluyveromyces marxianus , 2013 .

[20]  W. Yongmanitchai,et al.  Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate , 2013, Antonie van Leeuwenhoek.

[21]  Chunzhao Liu,et al.  Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis. , 2011, Bioresource technology.

[22]  Chumnong Sorapipatana,et al.  Life cycle cost of ethanol production from cassava in Thailand , 2011 .

[23]  Gi-Wook Choi,et al.  Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch , 2010 .

[24]  Z. L. Liu,et al.  Mechanisms of ethanol tolerance in Saccharomyces cerevisiae , 2010, Applied Microbiology and Biotechnology.

[25]  P. Rogers,et al.  Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae , 2010, Journal of Industrial Microbiology & Biotechnology.

[26]  Junmei Ding,et al.  Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae , 2009, Applied Microbiology and Biotechnology.

[27]  Miguel C. Teixeira,et al.  Genome-Wide Identification of Saccharomyces cerevisiae Genes Required for Maximal Tolerance to Ethanol , 2009, Applied and Environmental Microbiology.

[28]  H. Hoshida,et al.  High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? , 2009, Applied Microbiology and Biotechnology.

[29]  M. Yamada,et al.  High-Temperature Ethanol Fermentation and Transformation with Linear DNA in the Thermotolerant Yeast Kluyveromyces marxianus DMKU3-1042 , 2008, Applied and Environmental Microbiology.

[30]  W. Yongmanitchai,et al.  Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. , 2007, Bioresource technology.

[31]  Savitri Garivait,et al.  Full chain energy analysis of fuel ethanol from cassava in Thailand. , 2007, Environmental science & technology.

[32]  M. A. de Morais Jr,et al.  Isolation by genetic and physiological characteristics of a fuel-ethanol fermentative Saccharomyces cerevisiae strain with potential for genetic manipulation , 2005, Journal of Industrial Microbiology and Biotechnology.

[33]  S. Alfenore,et al.  Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production , 2004, Bioprocess and biosystems engineering.

[34]  S. Sthiannopkao Ethanol Production Technology in Thailand , 2004 .

[35]  Mohammad J. Taherzadeh,et al.  Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats , 2003, Applied and Environmental Microbiology.

[36]  I. Banat,et al.  Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery , 2000, Biotechnology and bioengineering.

[37]  L. Gustafsson,et al.  Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae , 2000, Applied Microbiology and Biotechnology.

[38]  Z. Chi,et al.  Saccharomyces cerevisiae strains with different degrees of ethanol tolerance exhibit different adaptive responses to produced ethanol , 2000, Journal of Industrial Microbiology and Biotechnology.

[39]  I. Banat,et al.  Review: Ethanol production at elevated temperatures and alcohol concentrations: Part I – Yeasts in general , 1998 .