Conic divisorial ideals and non-commutative crepant resolutions of edge rings of complete multipartite graphs

The first goal of the present paper is to study the class groups of the edge rings of complete multipartite graphs, denoted by $\Bbbk[K_{r_1,\ldots,r_n}]$, where $1 \leq r_1 \leq \cdots \leq r_n$. More concretely, we prove that the class group of $\Bbbk[K_{r_1,\ldots,r_n}]$ is isomorphic to $\mathbb{Z}^n$ if $n =3$ with $r_1 \geq 2$ or $n \geq 4$, while it turns out that the excluded cases can be deduced into Hibi rings. The second goal is to investigate the special class of divisorial ideals of $\Bbbk[K_{r_1,\ldots,r_n}]$, called conic divisorial ideals. We describe conic divisorial ideals for certain $K_{r_1,\ldots,r_n}$ including all cases where $\Bbbk[K_{r_1,\ldots,r_n}]$ is Gorenstein. Finally, we give a non-commutative crepant resolution (NCCR) of $\Bbbk[K_{r_1,\ldots,r_n}]$ in the case where it is Gorenstein.

[1]  Karen E. Smith,et al.  Non-commutative resolutions of toric varieties , 2018, Advances in Mathematics.

[2]  Conic divisor classes over a normal monoid algebra , 2004, math/0408110.

[3]  Rafael H. Villarreal,et al.  The Integral Closure of Subrings Associated to Graphs , 1998 .

[4]  Takayuki Hibi,et al.  Distributive Lattices, Affine Semigroup Rings and Algebras with Straightening Laws , 1987 .

[5]  Takayuki Hibi,et al.  Normal Polytopes Arising from Finite Graphs , 1998 .

[6]  Den Bergh,et al.  Non-commutative Crepant Resolutions , 2002 .

[7]  Non-Commutative Crepant Resolutions for Some Toric Singularities I , 2020 .

[8]  H. Priestley,et al.  Distributive Lattices , 2004 .

[9]  Nathan Broomhead Dimer Models and Calabi-Yau Algebras , 2009, 0901.4662.

[10]  W. Bruns,et al.  Divisorial Linear Algebra of Normal Semigroup Rings , 2000, math/0001049.

[11]  K. Ueda,et al.  Dimer models and the special McKay correspondence , 2009, 0905.0059.

[12]  Nan Li,et al.  Unimodular equivalence of order and chain polytopes , 2012 .

[13]  Karen E. Smith,et al.  Simplicity of Rings of Differential Operators in Prime Characteristic , 1997, math/0209275.

[14]  J. Okninski,et al.  On monomial algebras , 1988, Semigroup Algebras.

[15]  T. Hibi,et al.  Divisor class groups of affine semigroup rings associated with distributive lattices , 1992 .

[16]  M. Bergh,et al.  Non-commutative crepant resolutions for some toric singularities. II , 2017, Journal of Noncommutative Geometry.

[17]  Takayuki Hibi,et al.  Compressed polytopes, initial ideals and complete multipartite graphs , 2000 .

[18]  Osamu Iyama,et al.  Maximal modifications and Auslander–Reiten duality for non-isolated singularities , 2010, 1007.1296.

[19]  S. Spenko,et al.  Non-commutative resolutions of quotient singularities for reductive groups , 2017 .

[20]  Y. Nakajima Non-commutative crepant resolutions of Hibi rings with small class group , 2018, Journal of Pure and Applied Algebra.

[21]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[22]  Takayuki Hibi,et al.  Gorenstein Algebras of Veronese Type , 1997 .

[23]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[24]  H. Dao,et al.  Gorenstein modifications and \mathds{𝑄}-Gorenstein rings , 2016, Journal of Algebraic Geometry.

[25]  Steffen Oppermann,et al.  Representation dimension of artin algebras , 2010 .