Constraint Satisfaction with Countable Homogeneous Templates

For a fixed countable homogeneous relational structure Γ we study the computational problem whether a given finite structure of the same signature homomorphically maps to Γ. This problem is known as the constraint satisfaction problem CSP(Γ) for Γ and was intensively studied for finite Γ. We show that – as in the case of finite Γ – the computational complexity of CSP(Γ) for countable homogeneous Γ is determinded by the clone of polymorphisms of Γ. To this end we prove the following theorem which is of independent interest: The primitive positive definable relations over an ω-categorical structure Γ are precisely the relations that are invariant under the polymorphisms of Γ.

[1]  Ágnes Szendrei,et al.  Clones in universal algebra , 1986 .

[2]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[3]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraints on a three-element set , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[4]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[5]  I. Rosenberg Strongly rigid relations , 1973 .

[6]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[7]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[8]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[9]  Joachim Niehren,et al.  A new algorithm for normal dominance constraints , 2004, SODA '04.

[10]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[11]  Gregory L. Cherlin Homogeneous directed graphs. The imprimitive case , 1985, Logic Colloquium.

[12]  Bernhard Nebel,et al.  Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra , 1994, JACM.

[13]  Hélène Kirchner,et al.  Combining Symbolic Constraint Solvers on Algebraic Domains , 1994, J. Symb. Comput..

[14]  Reinhard Pöschel,et al.  Funktionen- und Relationenalgebren , 1979 .

[15]  Manfred Droste,et al.  Automorphism Groups of Infinite Semilinear Orders (I) , 1989 .

[16]  Manfred Droste,et al.  Structure of partially ordered sets with transitive automorphism groups , 1985 .

[17]  A. H. Lachlan,et al.  Countable homogeneous tournaments , 1984 .

[18]  Jaroslav Nesetril,et al.  The core of a graph , 1992, Discret. Math..

[19]  G. Cherlin,et al.  The Classification of Countable Homogeneous Directed Graphs and Countable Homogeneous N-Tournaments , 1998 .

[20]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[21]  Víctor Dalmau,et al.  A new tractable class of constraint satisfaction problems , 2005, Annals of Mathematics and Artificial Intelligence.

[22]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[23]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[24]  R. Woodrow,et al.  Countable ultrahomogeneous undirected graphs , 1980 .

[25]  Manuel Bodirsky,et al.  Pure Dominance Constraints , 2002, STACS.

[26]  Peter van Beek,et al.  Local and Global Relational Consistency , 1995, Theor. Comput. Sci..

[27]  Xuding Zhu,et al.  Duality and Polynomial Testing of Tree Homomorphisms , 1996 .

[28]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[29]  Andrei A. Bulatov Tractable Constraint Satisfaction Problems on a 3-element set , 2002, Electron. Colloquium Comput. Complex..

[30]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .

[31]  Franz Baader,et al.  Combining Constraint Solving , 2001, CCL.

[32]  Tom Cornell On Determining the Consistency of Partial Descriptions of Trees , 1994, ACL.

[33]  Ivo G. Rosenberg,et al.  Locally Maximal Clones , 1982, J. Inf. Process. Cybern..

[34]  Peter Jeavons,et al.  Reasoning about temporal relations: The tractable subalgebras of Allen's interval algebra , 2003, JACM.

[35]  James H. Schmerl,et al.  Countable homogeneous partially ordered sets , 1979 .

[36]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.