Precise Control of Thermal and Redox Properties of Organic Hole‐Transport Materials

[1]  Q. Meng,et al.  Electropolymerization Porous Aromatic Framework Film As a Hole-Transport Layer for Inverted Perovskite Solar Cells with Superior Stability. , 2017, ACS applied materials & interfaces.

[2]  Q. Meng,et al.  Molecular "Flower" as the High-Mobility Hole-Transport Material for Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[3]  Tzu‐Chien Wei,et al.  Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells , 2017, Scientific Reports.

[4]  Zhongqiang Wang,et al.  Tetra-carbazole substituted spiro[fluorene-9,9′-xanthene]-based hole-transporting materials with high thermal stability and mobility for efficient OLEDs , 2017 .

[5]  Thomas M. Brown,et al.  Advances in hole transport materials engineering for stable and efficient perovskite solar cells , 2017 .

[6]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[7]  S. Kazim,et al.  Lochtransportmaterialien für Perowskit‐Solarzellen , 2016 .

[8]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[9]  V. Jankauskas,et al.  Highly Efficient Perovskite Solar Cells Employing an Easily Attainable Bifluorenylidene-Based Hole-Transporting Material. , 2016, Angewandte Chemie.

[10]  O. Voznyy,et al.  Crosslinked Remote‐Doped Hole‐Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells , 2016, Advanced materials.

[11]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[12]  Jihuai Wu,et al.  Electrolytes in dye-sensitized solar cells. , 2015, Chemical reviews.

[13]  K. Leo,et al.  Hole-transport material variation in fully vacuum deposited perovskite solar cells , 2014 .

[14]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[15]  Karl Leo,et al.  Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode. , 2013, Nature materials.

[16]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .

[17]  William A. Goddard,et al.  Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations , 2004 .

[18]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[19]  Stephen F. Nelsen,et al.  Estimation of inner shell Marcus terms for amino nitrogen compounds by molecular orbital calculations , 1987 .

[20]  Rudolph A. Marcus,et al.  On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I , 1956 .

[21]  J. Salbeck,et al.  Spiro Compounds for Organic Electroluminescence and Related Applications , 2006 .