In-situ TEM investigation on deformation mechanisms of a fine-grained 316L stainless steel

[1]  R. Mahmudi,et al.  Grain size dependent mechanical behavior and TRIP effect in a metastable austenitic stainless steel , 2022, International Journal of Plasticity.

[2]  Baocai Yin,et al.  Tracking the sliding of grain boundaries at the atomic scale , 2022, Science.

[3]  P. Guan,et al.  Direct Atomic-Scale Observation of Ultrasmall Ag Nanowires that Exhibit fcc, bcc, and hcp Structures under Bending. , 2022, Physical review letters.

[4]  N. Tsuji,et al.  Achieving excellent mechanical properties in type 316 stainless steel by tailoring grain size in homogeneously recovered or recrystallized nanostructures , 2022, Acta Materialia.

[5]  Shuang-jiang Li,et al.  In-situ TEM observation of shear induced microstructure evolution in Cu-Nb alloy , 2021 .

[6]  M. Fu,et al.  Study of dislocation-twin boundary interaction mechanisms in plastic deformation of TWIP steel by discrete dislocation dynamics and dislocation density-based modeling , 2021 .

[7]  N. Tsuji,et al.  Grain Size Altering Yielding Mechanisms in Ultrafine Grained High-Mn Austenitic Steel: Advanced TEM Investigations , 2021, SSRN Electronic Journal.

[8]  Yonghao Zhao,et al.  Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy , 2021 .

[9]  Young‐kook Lee,et al.  The effect of austenite grain size on deformation mechanism of Fe–17Mn steel , 2021 .

[10]  Yi-Ting Lin,et al.  Mechanism of twinning induced plasticity in austenitic lightweight steel driven by compositional complexity , 2021 .

[11]  L. Qi,et al.  Atomic scale characterization of complex stacking faults and their configurations in cold deformed Fe42Mn38Co10Cr10 high-entropy alloy , 2020 .

[12]  Gabriel Meric de Bellefon,et al.  Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L , 2020 .

[13]  G. Chai,et al.  Strong temperature – Dependence of Ni -alloying influence on the stacking fault energy in austenitic stainless steel , 2020 .

[14]  R. Misra,et al.  On the deformation mechanism of austenitic stainless steel at elevated temperatures: A critical analysis of fine-grained versus coarse-grained structure , 2020 .

[15]  I. Karaman,et al.  Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single crystals deformed by twinning and slip , 2019 .

[16]  C. Leinenbach,et al.  High Ductility and Transformation-Induced-Plasticity in Metastable Stainless Steel Processed by Selective Laser Melting with Low Power , 2019, Scripta Materialia.

[17]  Xun Sun,et al.  Effect of temperature on the stacking fault energy and deformation behaviour in 316L austenitic stainless steel , 2019, Materials Science and Engineering: A.

[18]  H. Mirzadeh,et al.  Tailoring the microstructure and mechanical properties of AISI 316L austenitic stainless steel via cold rolling and reversion annealing , 2019, Materials Science and Engineering: A.

[19]  Xiaolei Wu,et al.  In-situ observation of dislocation dynamics near heterostructured interfaces , 2019, Materials Research Letters.

[20]  R. Ritchie,et al.  Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures , 2019, Materials Today.

[21]  A. K. Khan,et al.  Effects of grain refinement on the quasi-static compressive behavior of AISI 321 austenitic stainless steel: EBSD, TEM, and XRD studies , 2018, International Journal of Plasticity.

[22]  Xin Wu,et al.  Dislocation plasticity reigns in a traditional twinning-induced plasticity steel by in situ observation , 2018, Materials Today Nano.

[23]  C. Jiang,et al.  Fracture mechanisms of a Mo alloyed CoCrFeNi high entropy alloy: In-situ SEM investigation , 2018 .

[24]  Yang Cao,et al.  Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure , 2018, Journal of Materials Science.

[25]  Young‐kook Lee,et al.  Tensile properties and deformation mode of Si-added Fe-18Mn-0.6C steels , 2018 .

[26]  A. Hirata,et al.  Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi , 2018 .

[27]  A. Żywczak,et al.  The Investigation of Strain-Induced Martensite Reverse Transformation in AISI 304 Austenitic Stainless Steel , 2017, Metallurgical and Materials Transactions A.

[28]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[29]  E. Holmström,et al.  Stacking Fault Energies in austenitic stainless steels , 2016 .

[30]  Arpan Das Revisiting Stacking Fault Energy of Steels , 2016, Metallurgical and Materials Transactions A.

[31]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[32]  L. P. Karjalainen,et al.  Strain hardening behavior of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) austenitic stainless steel and relationship with grain size and deformation mechanism , 2014 .

[33]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[34]  Xin Sun,et al.  Twinning and martensite in a 304 austenitic stainless steel , 2012 .

[35]  L. P. Karjalainen,et al.  Nanoscale Deformation Behavior of Phase-Reversion Induced Austenitic Stainless Steels: The Interplay Between Grain Size from Nano-Grain Regime to Coarse-Grain Regime , 2012, Metallurgical and Materials Transactions A.

[36]  X. Liao,et al.  Twinning partial multiplication at grain boundary in nanocrystalline fcc metals , 2009 .

[37]  Yuntian Zhu,et al.  Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries , 2006 .

[38]  N. Hansen,et al.  Hall–Petch relation and boundary strengthening , 2004 .

[39]  M. Imam,et al.  Effect of annealing twins on Hall–Petch relation in polycrystalline materials , 2004 .

[40]  X. Feaugas,et al.  Grain-size effects on tensile behavior of nickel and AISI 316L stainless steel , 2003 .

[41]  J. Jun,et al.  Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of γ→ε martensitic transformation in Fe–Mn alloy , 1998 .

[42]  B. Kashyap,et al.  On the Hall-Petch relationship and substructural evolution in type 316L stainless steel , 1995 .

[43]  T. P. Weihs,et al.  Grain boundary accommodation of slip in Ni3Al containing boron , 1986 .

[44]  L. Murr Some observations of grain boundary ledges and ledges as dislocation sources in metals and alloys , 1975 .

[45]  G. Chin,et al.  Formation of deformation twins in f.c.c. crystals , 1973 .

[46]  W. T. Read,et al.  Multiplication Processes for Slow Moving Dislocations , 1950 .

[47]  A. Borgenstam,et al.  Microstructure development in a high-nickel austenitic stainless steel using EBSD during in situ tensile deformation , 2018 .

[48]  Youping Chen,et al.  Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni , 2017 .

[49]  Wei Li,et al.  Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance , 2017 .

[50]  Z. D. Wang,et al.  Strain hardening behavior of nanograined/ultrafine-grained (NG/UFG) austenitic 16Cr–10Ni stainless steel and its relationship to austenite stability and deformation behavior , 2016 .

[51]  Dierk Raabe,et al.  Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, , 2013 .

[52]  Xiaolei Wu,et al.  Deformation twinning in nanocrystalline materials , 2012 .

[53]  L. P. Karjalainen,et al.  On the Significance of Nature of Strain-Induced Martensite on Phase-Reversion-Induced Nanograined/Ultrafine-Grained Austenitic Stainless Steel , 2009 .

[54]  Young‐kook Lee,et al.  Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system , 2000 .