Efficient search approaches for k-medoids-based algorithms
暂无分享,去创建一个
[1] John F. Roddick,et al. A Survey of Temporal Knowledge Discovery Paradigms and Methods , 2002, IEEE Trans. Knowl. Data Eng..
[2] Ickjai Lee,et al. AUTOCLUST+: Automatic Clustering of Point-Data Sets in the Presence of Obstacles , 2000, TSDM.
[3] Johannes Gehrke,et al. CACTUS—clustering categorical data using summaries , 1999, KDD '99.
[4] Vipin Kumar,et al. Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.
[5] Jeng-Shyang Pan,et al. Bound for Minkowski metric or quadratic metric applied to VQ codeword search , 1996 .
[6] Jiawei Han,et al. Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.
[7] Sin-Horng Chen,et al. Fast search algorithm for vq-based recognition of isolated word , 1989, INFOCOM 1989.
[8] E. Ruiz. An algorithm for finding nearest neighbours in (approximately) constant average time , 1986 .
[9] Robert M. Gray,et al. An Improvement of the Minimum Distortion Encoding Algorithm for Vector Quantization , 1985, IEEE Trans. Commun..
[10] John F. Roddick,et al. A comparative study and extensions to k-medoids algorithms , 2001 .
[11] George Karypis,et al. C HAMELEON : A Hierarchical Clustering Algorithm Using Dynamic Modeling , 1999 .