Randomized Benchmarking as Convolution: Fourier Analysis of Gate Dependent Errors

We show that the Randomized Benchmarking (RB) protocol is a convolution amenable to Fourier space analysis. By adopting the mathematical framework of Fourier transforms of matrix-valued functions on groups established in recent work from Gowers and Hatami \cite{GH15}, we provide an alternative proof of Wallman's \cite{Wallman2018} and Proctor's \cite{Proctor17} bounds on the effect of gate-dependent noise on randomized benchmarking. We show explicitly that as long as our faulty gate-set is close to the targeted representation of the Clifford group, an RB sequence is described by the exponential decay of a process that has exactly two eigenvalues close to one and the rest close to zero. This framework also allows us to construct a gauge in which the average gate-set error is a depolarizing channel parameterized by the RB decay rates, as well as a gauge which maximizes the fidelity with respect to the ideal gate-set.

[1]  Jiaan Qi,et al.  Comparing the randomized benchmarking figure with the average infidelity of a quantum gate-set , 2018, International Journal of Quantum Information.

[2]  T. R. Tan,et al.  High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits. , 2016, Physical review letters.

[3]  S. Olmschenk,et al.  Randomized benchmarking of atomic qubits in an optical lattice , 2010, 1008.2790.

[4]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[5]  Kenneth Rudinger,et al.  What Randomized Benchmarking Actually Measures. , 2017, Physical review letters.

[6]  Joseph Emerson,et al.  Efficient error characterization in quantum information processing , 2007 .

[7]  M. Veldhorst,et al.  Nonexponential fidelity decay in randomized benchmarking with low-frequency noise , 2015, 1502.05119.

[8]  Josef Stoer,et al.  Numerische Mathematik 2 , 1990 .

[9]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[10]  Steven T. Flammia,et al.  Estimating the coherence of noise , 2015, 1503.07865.

[11]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[12]  F. K. Wilhelm,et al.  Complete randomized benchmarking protocol accounting for leakage errors , 2015, 1505.00580.

[13]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[14]  E Knill,et al.  Randomized benchmarking of multiqubit gates. , 2012, Physical review letters.

[15]  Jay M. Gambetta,et al.  Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.

[16]  Arnaud Carignan-Dugas,et al.  Characterizing universal gate sets via dihedral benchmarking , 2015, 1508.06312.

[17]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[18]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[19]  Joel J. Wallman,et al.  Randomized benchmarking with gate-dependent noise , 2017, 1703.09835.

[20]  Arnaud Carignan-Dugas,et al.  From randomized benchmarking experiments to gate-set circuit fidelity: how to interpret randomized benchmarking decay parameters , 2018, New Journal of Physics.

[21]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[22]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[23]  Margarita A. Man’ko,et al.  Journal of Optics B: Quantum and Semiclassical Optics , 2003 .

[24]  Joseph Emerson,et al.  Robust characterization of leakage errors , 2016 .

[25]  M Saffman,et al.  Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom qubits. , 2015, Physical review letters.

[26]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[27]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[28]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[29]  Bryan H. Fong,et al.  Randomized Benchmarking, Correlated Noise, and Ising Models , 2017, 1703.09747.

[30]  M Steffen,et al.  Characterization of addressability by simultaneous randomized benchmarking. , 2012, Physical review letters.

[31]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[32]  T. Ladd Hyperfine-induced decay in triple quantum dots , 2012, 1204.4844.

[33]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[34]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[35]  W. T. Gowers,et al.  Inverse and stability theorems for approximate representations of finite groups , 2015, 1510.04085.

[36]  R. Laflamme,et al.  Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.

[37]  Andrew W. Cross,et al.  Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.

[38]  Andrew W. Cross,et al.  Scalable randomised benchmarking of non-Clifford gates , 2015, npj Quantum Information.

[39]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[40]  Alexander Russell,et al.  Approximate Representations, Approximate Homomorphisms, and Low-Dimensional Embeddings of Groups , 2015, SIAM J. Discret. Math..