Stack Languages and log n Space

We consider the space complexity of stack languages. The main result is: if a language is accepted by a deterministic (nondeterministic) one-way stack automaton then it is the image under a nonerasing homomorphism of a language accepted by a deterministic (nondeterministic) Turing machine that operates within space log n.

[1]  Alfred V. Aho,et al.  Nested Stack Automata , 1969, Journal of the ACM.

[2]  Jeffrey D. Ullman,et al.  Sets Accepted by One-Way Stack Automata Are Context Sensitive , 1968, Inf. Control..

[3]  Walter J. Savitch,et al.  Relationships Between Nondeterministic and Deterministic Tape Complexities , 1970, J. Comput. Syst. Sci..

[4]  Frederick N. Springsteel,et al.  Language Recognition by Marking Automata , 1972, Inf. Control..

[5]  V. A. Nepomnyashehii Rudimentary interpretation of two-tape turing computation , 1970 .

[6]  Jeffrey D. Ullman,et al.  Deterministic Stack Automata and the Quotient Operator , 1968, J. Comput. Syst. Sci..

[7]  Sheila A. Greibach,et al.  Checking Automata and One-Way Stack Languages , 1969, J. Comput. Syst. Sci..

[8]  Celia Wrathall,et al.  Characterizations of the Dyck Sets , 1977, RAIRO Theor. Informatics Appl..

[9]  Seymour Ginsburg,et al.  Stack automata and compiling , 1967, JACM.

[10]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[11]  Seymour Ginsburg,et al.  One-way stack automata , 1967, JACM.

[12]  Ronald V. Book,et al.  Translational Lemmas, Polynomial Time, and (log n)^j-Space , 1976, Theor. Comput. Sci..

[13]  Oscar H. Ibarra,et al.  On Two-way Multihead Automata , 1973, J. Comput. Syst. Sci..

[14]  Oscar H. Ibarra,et al.  Characterizations of Some Tape and Time Complexity Classes of Turing Machines in Terms of Multihead and Auxiliary Stack Automata , 1971, J. Comput. Syst. Sci..

[15]  William C. Rounds,et al.  Complexity of Recognition in Intermediate-Level Languages , 1973, SWAT.