THE THEORY OF COMPLEX PROBABILITY AND THE FIRST ORDER RELIABILITY METHOD

The Kolmogorov’s system of axioms can be extended to encompass the imaginary set of numbers and this by adding to the original five axioms an additional three axioms. Hence, any experiment can thus be executed in what is now the complex set C (Real set R with real probability + Imaginary set M with imaginary probability). The objective here is to evaluate the complex probabilities by considering supplementary new imaginary dimensions to the event occurring in the “real” laboratory. Whatever the probability distribution of the input random variable in R is, the corresponding probability in the whole set C is always one, so the outcome of the random experiment in C can be predicted totally. The result indicates that chance and luck in R is replaced now by total determinism in C. This new complex probability model will be applied to the concepts of degradation and the Remaining Useful Lifetime (RUL), thus to the field of prognostic based on reliability. Therefore, an example of Young modulus will be applied and the First Order Reliability Method (FORM) analysis will be used for this purpose.

[1]  J. Peiffer,et al.  Une histoire des mathématiques : routes et dédales , 1986 .

[2]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[3]  Daniel De Kee,et al.  Advanced Mathematics for Applied and Pure Sciences , 1997 .

[4]  W J Wall,et al.  From here to infinity. , 2000, Biologist.

[5]  H. M. Collins,et al.  Dreams of a Final Theory , 1999 .

[6]  C. Geiss,et al.  An introduction to probability theory , 2008 .

[7]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[8]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[9]  Abdo Abou Jaoude,et al.  COMPLEX PROBABILITY THEORY AND PROGNOSTIC , 2014 .

[10]  Melvin Alexander Applied Statistics and Probability for Engineers , 1995 .

[11]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[12]  D. Dacunha-castelle Chemins de l'aléatoire : le hasard et le risque dans la société moderne , 1996 .

[13]  I. Stewart Does God Play Dice? The New Mathematics of Chaos , 1989 .

[14]  Bernhard Poerksen,et al.  The end of certainty , 1992 .

[15]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[16]  B. Greene,et al.  The fabric of the cosmos : space, time, and the texture of reality , 2004 .

[17]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[18]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[19]  Patrick Portella Entre le temps et l'éternité , 2002 .

[20]  Robert V. Brill,et al.  Applied Statistics and Probability for Engineers , 2004, Technometrics.

[21]  Curtis F. Gerald,et al.  APPLIED NUMERICAL ANALYSIS , 1972, The Mathematical Gazette.

[22]  李幼升,et al.  Ph , 1989 .

[23]  Pierre L’Ecuyer,et al.  Random Number Generation , 2008, Encyclopedia of Algorithms.

[24]  J. Gullberg Mathematics: From the Birth of Numbers , 1997 .

[25]  Raymond H. Myers,et al.  Probability and Statistics for Engineers and Scientists. , 1973 .

[26]  P. L’Ecuyer Random Number Generation , 2012 .

[27]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[28]  J. Pier Development of mathematics , 1994 .

[29]  H. Poincaré La science et l'hypothèse , 1968 .

[30]  J. McMaster,et al.  The Elegant Universe , 1999 .

[31]  Claudio Calosi,et al.  An elegant universe , 2020, Synthese.

[32]  Abdo Abou Jaoude Advanced analytical model for the prognostic of industrial systems subject to fatigue , 2012 .

[33]  Abdo Abou Jaoude THE COMPLEX STATISTICS PARADIGM AND THE LAW OF LARGE NUMBERS , 2013 .

[34]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[35]  Gunther S. Stent,et al.  Does God Play Dice , 1979 .

[36]  Maurizio Dapor Monte Carlo Strategies , 2020, Transport of Energetic Electrons in Solids.

[37]  Abdo Abou Jaoude,et al.  Prediction in Complex Dimension Using Kolmogorov's Set of Axioms , 2010 .

[38]  Jean-Luc Chabert,et al.  Chaos et déterminisme , 1992 .

[39]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .