Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators

The paper describes the design and implementation of an electronically temperature compensated reference oscillator based on capacitive silicon micromechanical resonators. The design of a 5.5-MHz silicon bulk acoustic resonator has been optimized to offer high quality factor (> 100 000) while maintaining tunability in excess of 3000 ppm for fine-tuning and temperature compensation. Oscillations are sustained with a CMOS amplifier. When interfaced with the temperature compensating bias circuit, the oscillator exhibits a frequency drift of 39 ppm over 100degC as compared to an uncompensated frequency drift of 2830 ppm over the same range. The sustaining amplifier and compensation circuitry were fabricated in a 2P3M 0.6-mum CMOS process.

[1]  Farrokh Ayazi,et al.  A two-chip, 4-MHz, microelectromechanical reference oscillator , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[2]  Janusz A. Starzyk,et al.  A DC-DC Charge Pump Based on Voltage Doublers , 1998 .

[3]  J. Kiihamaki,et al.  Nonlinearities in single-crystal silicon micromechanical resonators , 2003, TRANSDUCERS '03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664).

[4]  B. Murmann,et al.  Effects of Mechanical Vibrations and Bias Voltage Noise on Phase Noise of MEMS Resonator Based Oscillators , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[5]  R. Howe,et al.  An integrated CMOS micromechanical resonator high-Q oscillator , 1999, IEEE J. Solid State Circuits.

[6]  J. F. Dickson,et al.  On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique , 1976 .

[7]  G. K. Ho,et al.  High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps , 2003 .

[8]  Wan-Thai Hsu,et al.  Geometric stress compensation for enhanced thermal stability in micromechanical resonators , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[9]  J. R. Vig,et al.  SC-Cut Resonators for Temperature Compensated Oscillators , 1982 .

[10]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[11]  Thomas W. Kenny,et al.  ACTIVE TEMPERATURE COMPENSATION FOR MICROMACHINED RESONATORS , 2004 .

[12]  P.R. Gray,et al.  A precision curvature-compensated CMOS bandgap reference , 1983, IEEE Journal of Solid-State Circuits.

[13]  Igor M. Filanovsky,et al.  Simple CMOS analog square-rooting and squaring circuits , 1992 .

[14]  C. Nguyen,et al.  1.51-GHz nanocrystalline diamond micromechanical disk resonator with material-mismatched isolating support , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[15]  Farrokh Ayazi,et al.  Low-motional-impedance highly-tunable I/sup 2/ resonators for temperature-compensated reference oscillators , 2005, 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005. MEMS 2005..

[16]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[17]  F. Ayazi,et al.  VHF single crystal silicon capacitive elliptic bulk-mode disk resonators-part II: implementation and characterization , 2004, Journal of Microelectromechanical Systems.

[18]  C.T.-C. Nguyen,et al.  Series-resonant VHF micromechanical resonator reference oscillators , 2004, IEEE Journal of Solid-State Circuits.

[19]  Janusz A. Starzyk,et al.  A DC-DC charge pump design based on voltage doublers , 2001 .