Transcriptional and epigenetic decoding of the microglial aging process

[1]  Z. Ruzsics,et al.  Neonatal immune challenge poses a sex-specific risk for epigenetic microglial reprogramming and behavioral impairment , 2023, Nature communications.

[2]  Wei-Guang Li,et al.  Social deficits via dysregulated Rac1-dependent excitability control of prefrontal cortical neurons and increased GABA/glutamate ratios. , 2022, Cell reports.

[3]  Yousheng Shu,et al.  Microglial debris is cleared by astrocytes via C4b-facilitated phagocytosis and degraded via RUBICON-dependent noncanonical autophagy in mice , 2022, Nature Communications.

[4]  Ukpong B. Eyo,et al.  Microglia and Neurodevelopmental Disorders. , 2022, Annual review of neuroscience.

[5]  J. Cryan,et al.  The blood-brain barrier in aging and neurodegeneration , 2022, Molecular Psychiatry.

[6]  Tong Zhu,et al.  Single-cell transcriptomic landscapes of the otic neuronal lineage at multiple early embryonic ages. , 2022, Cell reports.

[7]  Evan Z. Macosko,et al.  Dissection of artifactual and confounding glial signatures by single-cell sequencing of mouse and human brain , 2022, Nature Neuroscience.

[8]  Yanxin Li,et al.  Decoding the temporal and regional specification of microglia in the developing human brain. , 2022, Cell stem cell.

[9]  J. Teeling,et al.  Systemic Inflammation Accelerates Changes in Microglial and Synaptic Markers in an Experimental Model of Chronic Neurodegeneration , 2022, Frontiers in Neuroscience.

[10]  T. Raj,et al.  Genetic analysis of the human microglia transcriptome across brain regions, aging and disease pathologies , 2022, Nature Genetics.

[11]  M. Mattson,et al.  TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration , 2021, Nature Neuroscience.

[12]  S. Amor,et al.  White matter microglia heterogeneity in the CNS , 2021, Acta Neuropathologica.

[13]  Xin Zhang,et al.  The origin and repopulation of microglia , 2021, Developmental neurobiology.

[14]  E. Santos,et al.  Regulation of myelination by microglia , 2021, Science advances.

[15]  Bo Peng,et al.  NeuroD1 induces microglial apoptosis and cannot induce microglia-to-neuron cross-lineage reprogramming , 2021, Neuron.

[16]  L. Tsai,et al.  MEF2 is a key regulator of cognitive potential and confers resilience to neurodegeneration , 2021, Science Translational Medicine.

[17]  M. Prinz,et al.  Microglia: Immune and non-immune functions. , 2021, Immunity.

[18]  M. Morgante,et al.  Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression , 2021, The Plant journal : for cell and molecular biology.

[19]  D. Boche,et al.  Diversity of transcriptomic microglial phenotypes in aging and Alzheimer's disease , 2021, Alzheimer's & dementia : the journal of the Alzheimer's Association.

[20]  D. Holtzman,et al.  Activated microglia mitigate Aβ-associated tau seeding and spreading , 2021, The Journal of experimental medicine.

[21]  J. Hefendehl,et al.  Microglia Phenotypes Converge in Aging and Neurodegenerative Disease , 2021, Frontiers in Neurology.

[22]  David R. Brown,et al.  Senescent Microglia: The Key to the Ageing Brain? , 2021, International journal of molecular sciences.

[23]  J. Obst,et al.  Replicative senescence dictates the emergence of disease-associated microglia and contributes to Aβ pathology , 2021, bioRxiv.

[24]  W. Banks,et al.  Healthy aging and the blood–brain barrier , 2021, Nature Aging.

[25]  Melanie A. Huntley,et al.  Trem2 restrains the enhancement of tau accumulation and neurodegeneration by β-amyloid pathology , 2021, Neuron.

[26]  T. Yuan,et al.  Primary Microglia Isolation from Postnatal Mouse Brains. , 2021, Journal of visualized experiments : JoVE.

[27]  Kira E. Poskanzer,et al.  Reactive astrocyte nomenclature, definitions, and future directions , 2021, Nature Neuroscience.

[28]  M. Simons,et al.  White matter aging drives microglial diversity , 2021, Neuron.

[29]  I. Weissman,et al.  Restoring metabolism of myeloid cells reverses cognitive decline in ageing , 2021, Nature.

[30]  D. Hume,et al.  On the utility of CSF1R inhibitors , 2021, Proceedings of the National Academy of Sciences.

[31]  Janna H. Neltner,et al.  Dystrophic microglia are associated with neurodegenerative disease and not healthy aging in the human brain , 2021, Neurobiology of Aging.

[32]  K. Nave,et al.  Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis , 2020, Nature neuroscience.

[33]  Sung Young Kim,et al.  Endothelial cell senescence: A machine learning-based meta-analysis of transcriptomic studies , 2020, Ageing Research Reviews.

[34]  L. Obici,et al.  A Narrative Review of the Role of Transthyretin in Health and Disease , 2020, Neurology and Therapy.

[35]  Ukpong B. Eyo,et al.  Negative feedback control of neuronal activity by microglia , 2020, Nature.

[36]  D. Vavvas,et al.  CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages , 2020, Proceedings of the National Academy of Sciences.

[37]  T. DeSilva,et al.  Fractalkine-Dependent Microglial Pruning of Viable Oligodendrocyte Progenitor Cells Regulates Myelination , 2020, Cell reports.

[38]  Rohit Reja,et al.  Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia , 2020, Cell.

[39]  Rui Feng,et al.  Efficient Strategies for Microglia Replacement in the Central Nervous System. , 2020, Cell reports.

[40]  B. Barres,et al.  Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model , 2020, Nature Communications.

[41]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[42]  Chenghua Gu,et al.  Neuronal regulation of the blood–brain barrier and neurovascular coupling , 2020, Nature Reviews Neuroscience.

[43]  James T. Webber,et al.  Aging hallmarks exhibit organ-specific temporal signatures , 2020, Nature.

[44]  T. Foster,et al.  Microglia senescence occurs in both substantia nigra and ventral tegmental area , 2020, Glia.

[45]  Mirjana Efremova,et al.  CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes , 2020, Nature Protocols.

[46]  J. Chan,et al.  Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory , 2020, Nature Neuroscience.

[47]  R. Sankowski,et al.  Microglia Heterogeneity in the Single-Cell Era. , 2020, Cell reports.

[48]  K. Kosik,et al.  Microglial microRNAs mediate sex-specific responses to tau pathology , 2019, Nature Neuroscience.

[49]  Andrew J. Mocle,et al.  Disruption of Oligodendrogenesis Impairs Memory Consolidation in Adult Mice , 2019, Neuron.

[50]  L. Buée,et al.  NLRP3 inflammasome activation drives tau pathology , 2019, Nature.

[51]  D. Holtzman,et al.  Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model , 2019, The Journal of experimental medicine.

[52]  Sagar,et al.  Mapping microglia states in the human brain through the integration of high-dimensional techniques , 2019, Nature Neuroscience.

[53]  Gary D. Bader,et al.  Single-cell transcriptomic profiling of the aging mouse brain , 2019, Nature Neuroscience.

[54]  Ying Sun,et al.  NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis , 2019, BMC Medicine.

[55]  I. Fyfe Mouse brains, human microglia , 2019, Nature Reviews Neurology.

[56]  Chao Zhang,et al.  Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model , 2019, Nature Communications.

[57]  V. Miron,et al.  The pro-remyelination properties of microglia in the central nervous system , 2019, Nature Reviews Neurology.

[58]  Kotb Abdelmohsen,et al.  Transcriptome signature of cellular senescence. , 2019, Nucleic acids research.

[59]  Satoshi Toda,et al.  Engineering cell-cell communication networks: programming multicellular behaviors. , 2019, Current opinion in chemical biology.

[60]  Virginia M. Y. Lee,et al.  TREM2 function impedes tau seeding in neuritic plaques , 2019, Nature Neuroscience.

[61]  Nicola Thrupp,et al.  The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques , 2019, Cell reports.

[62]  M. McCarthy,et al.  Microglial Phagocytosis of Newborn Cells Is Induced by Endocannabinoids and Sculpts Sex Differences in Juvenile Rat Social Play , 2019, Neuron.

[63]  S. Quake,et al.  Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1 , 2019, Nature Medicine.

[64]  D. Sarkar,et al.  Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism , 2019, Neuropsychopharmacology.

[65]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[66]  Evan Z. Macosko,et al.  Single‐Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell‐State Changes , 2019, Immunity.

[67]  R. Kahn,et al.  Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry , 2018, Nature Neuroscience.

[68]  Michael J. T. Stubbington,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[69]  D. Beule,et al.  Transcriptional and Translational Differences of Microglia from Male and Female Brains. , 2018, Cell reports.

[70]  David R. Brown,et al.  Model Senescent Microglia Induce Disease Related Changes in α-Synuclein Expression and Activity , 2018, Biomolecules.

[71]  Jian Ma,et al.  S100A8/A9 in Inflammation , 2018, Front. Immunol..

[72]  E. Marcello,et al.  Sex-Specific Features of Microglia from Adult Mice , 2018, Cell reports.

[73]  Marco Prinz,et al.  Microglial control of astrocytes in response to microbial metabolites , 2018, Nature.

[74]  M. Staufenbiel,et al.  Innate immune memory in the brain shapes neurological disease hallmarks , 2018, Nature.

[75]  Claudia Buss,et al.  Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring , 2018, Nature Neuroscience.

[76]  Abdelraheim Attaai,et al.  Aged Mouse Cortical Microglia Display an Activation Profile Suggesting Immunotolerogenic Functions , 2018, International journal of molecular sciences.

[77]  Bo Peng,et al.  Dual extra-retinal origins of microglia in the model of retinal microglia repopulation , 2018, Cell Discovery.

[78]  Bo Peng,et al.  Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion , 2018, Nature Neuroscience.

[79]  W. Möbius,et al.  Defective cholesterol clearance limits remyelination in the aged central nervous system , 2018, Science.

[80]  T. Hughes,et al.  The Human Transcription Factors , 2018, Cell.

[81]  Charles C. White,et al.  A transcriptomic atlas of aged human microglia , 2018, Nature Communications.

[82]  D. Holtzman,et al.  TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy , 2017, Proceedings of the National Academy of Sciences.

[83]  I. Amit,et al.  Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN-I-dependent manner , 2017, Nature Communications.

[84]  S. Melov,et al.  Unmasking Transcriptional Heterogeneity in Senescent Cells , 2017, Current Biology.

[85]  R. Feil,et al.  Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging , 2017, Nature Neuroscience.

[86]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[87]  G. Landreth,et al.  TREM2 in Neurodegenerative Diseases , 2017, Molecular Neurodegeneration.

[88]  Jeff E. Mold,et al.  The Lifespan and Turnover of Microglia in the Human Brain , 2017, Cell reports.

[89]  Baptiste N. Jaeger,et al.  An environment-dependent transcriptional network specifies human microglia identity , 2017, Science.

[90]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[91]  B. Spittau,et al.  Aging Microglia—Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases , 2017, Front. Aging Neurosci..

[92]  M. Colonna,et al.  Microglia Function in the Central Nervous System During Health and Neurodegeneration. , 2017, Annual review of immunology.

[93]  S. Berger,et al.  Changes in the Transcriptome of Human Astrocytes Accompanying Oxidative Stress-Induced Senescence , 2016, Front. Aging Neurosci..

[94]  P. Lucassen,et al.  Microglial Priming and Alzheimer’s Disease: A Possible Role for (Early) Immune Challenges and Epigenetics? , 2016, Front. Hum. Neurosci..

[95]  G. Natoli,et al.  Specificity and Function of IRF Family Transcription Factors: Insights from Genomics , 2016 .

[96]  Paul Martin,et al.  Corpse Engulfment Generates a Molecular Memory that Primes the Macrophage Inflammatory Response , 2016, Cell.

[97]  Benjamin E. L. Lauffer,et al.  Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses , 2016, Nature Communications.

[98]  A. Najafi,et al.  Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. , 2016, Brain : a journal of neurology.

[99]  B. Stevens,et al.  New insights on the role of microglia in synaptic pruning in health and disease , 2016, Current Opinion in Neurobiology.

[100]  G. Kollias,et al.  Neuroinflammatory TNFα Impairs Memory via Astrocyte Signaling , 2015, Cell.

[101]  Tom Michoel,et al.  Microglial brain region-dependent diversity and selective regional sensitivities to ageing , 2015, Nature Neuroscience.

[102]  Jia-wei Zhou,et al.  Neuroinflammation in Parkinson’s disease and its potential as therapeutic target , 2015, Translational Neurodegeneration.

[103]  J. Godbout,et al.  Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease , 2015, Neuropharmacology.

[104]  K. Green,et al.  Characterizing Newly Repopulated Microglia in the Adult Mouse: Impacts on Animal Behavior, Cell Morphology, and Neuroinflammation , 2015, PloS one.

[105]  Peter K. Stys,et al.  Inefficient clearance of myelin debris by microglia impairs remyelinating processes , 2015, The Journal of experimental medicine.

[106]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[107]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[108]  Hailan Hu,et al.  Visualizing an emotional valence map in the limbic forebrain by TAI-FISH , 2014, Nature Neuroscience.

[109]  Brian L. West,et al.  Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain , 2014, Neuron.

[110]  V. Perry,et al.  Microglial priming in neurodegenerative disease , 2014, Nature Reviews Neurology.

[111]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[112]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[113]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[114]  Tracy J. Yuen,et al.  M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination , 2013, Nature Neuroscience.

[115]  Manuel Serrano,et al.  The Hallmarks of Aging , 2013, Cell.

[116]  D. Morgan,et al.  Aging enhances classical activation but mitigates alternative activation in the central nervous system , 2013, Neurobiology of Aging.

[117]  J. Godbout,et al.  Review: Microglia of the aged brain: primed to be activated and resistant to regulation , 2013, Neuropathology and applied neurobiology.

[118]  M. Brucale,et al.  Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies , 2013, PloS one.

[119]  F. Rosenbauer,et al.  Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways , 2013, Nature Neuroscience.

[120]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[121]  Urs Meyer,et al.  Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice , 2012, Journal of Neuroinflammation.

[122]  V. Perry,et al.  Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia , 2012, Journal of Neuroinflammation.

[123]  J. Serratosa,et al.  Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β , 2011, Journal of Neuroinflammation.

[124]  S. Jick,et al.  NSAID use and risk of Parkinson disease: a population‐based case‐control study , 2011, European journal of neurology.

[125]  J. Pollard,et al.  Absence of Colony Stimulation Factor-1 Receptor Results in Loss of Microglia, Disrupted Brain Development and Olfactory Deficits , 2011, PloS one.

[126]  W. Wurst,et al.  Telomere shortening reduces Alzheimer's disease amyloid pathology in mice. , 2011, Brain : a journal of neurology.

[127]  F. Kametani,et al.  Wild-type transthyretin significantly contributes to the formation of amyloid fibrils in familial amyloid polyneuropathy patients with amyloidogenic transthyretin Val30Met. , 2011, Human pathology.

[128]  Jianqing Ding,et al.  Microglia in the aging brain: relevance to neurodegeneration , 2010, Molecular Neurodegeneration.

[129]  D. Baker,et al.  Inflammation in neurodegenerative diseases , 2010, Immunology.

[130]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[131]  J. Sheu,et al.  Inhibitory Effects of Ketamine on Lipopolysaccharide-Induced Microglial Activation , 2009, Mediators of inflammation.

[132]  Y. Huang,et al.  Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1β and anti-inflammatory IL-10 cytokines , 2009, Brain, Behavior, and Immunity.

[133]  Richard M. Cawthon,et al.  Telomere length measurement by a novel monochrome multiplex quantitative PCR method , 2009, Nucleic acids research.

[134]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[135]  D. Bennett,et al.  Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology , 2008, Neurology.

[136]  J. Sheridan,et al.  Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia , 2008, Journal of Neuroinflammation.

[137]  Ruiqiang Li,et al.  SOAP: short oligonucleotide alignment program , 2008, Bioinform..

[138]  D. Walker,et al.  Evidence that aging and amyloid promote microglial cell senescence. , 2007, Rejuvenation research.

[139]  Bin Zhang,et al.  Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model , 2007, Neuron.

[140]  Jeppe Falsig,et al.  The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions , 2006, Journal of Neuroimmunology.

[141]  Makoto Sawada,et al.  Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains , 2003, Acta Neuropathologica.

[142]  T. Curran,et al.  Mapping patterns of c-fos expression in the central nervous system after seizure. , 1987, Science.

[143]  Michael E. Greenberg,et al.  Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene , 1984, Nature.

[144]  J. Sheridan,et al.  Microglia Priming with Aging and Stress , 2017, Neuropsychopharmacology.