Extrinsic information transfer functions: model and erasure channel properties
暂无分享,去创建一个
[1] Stephan ten Brink,et al. Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..
[2] S. Brink. Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .
[3] Michael Lentmaier,et al. On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.
[4] Dariush Divsalar,et al. Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..
[5] S. Brink. Convergence of iterative decoding , 1999 .
[6] Daniel A. Spielman,et al. Practical loss-resilient codes , 1997, STOC '97.
[7] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[8] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[9] John T. Coffey,et al. Trellis Structure and Higher Weights of Extremal Self-Dual Codes , 2001, Des. Codes Cryptogr..
[10] J. Boutros,et al. Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[11] Alain Glavieux,et al. Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .
[12] Daniel A. Spielman,et al. Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.
[13] H. Jin,et al. Irregular repeat accumulate codes , 2000 .
[14] Torleiv Kløve,et al. Support weight distribution of linear codes , 1992, Discret. Math..
[15] Christine Bachoc. On Harmonic Weight Enumerators of Binary Codes , 1999, Des. Codes Cryptogr..
[16] Gian Mario Maggio,et al. Analysis of the iterative decoding of LDPC and product codes using the Gaussian approximation , 2003, IEEE Trans. Inf. Theory.
[17] Hesham El Gamal,et al. Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[18] Torleiv Kløve,et al. The weight distribution of irreducible cyclic codes with block lengths n1((q1-1)/N) , 1977, Discret. Math..
[19] J. Macwilliams. A theorem on the distribution of weights in a systematic code , 1963 .
[20] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[21] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[22] T. Aaron Gulliver,et al. Higher Weights and Graded Rings for Binary Self-dual Codes , 2003, Discret. Appl. Math..
[23] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[24] Stephan ten Brink,et al. Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2001 .
[25] Johannes B. Huber,et al. Bounds on information combining , 2005, IEEE Transactions on Information Theory.
[26] K. A. Semendyayev,et al. Handbook of mathematics (3rd ed.) , 1997 .
[27] Stephan ten Brink,et al. Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.
[28] Sae-Young Chung,et al. On the construction of some capacity-approaching coding schemes , 2000 .
[29] Amin Shokrollahi,et al. Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.
[30] Simon Huettinger,et al. Information Processing and Combining in Channel Coding , 2004 .
[31] Tor Helleseth,et al. On the information function of an error-correcting code , 1997, IEEE Trans. Inf. Theory.
[32] S. ten Brink,et al. Code doping for triggering iterative decoding convergence , 2001 .
[33] Joachim Hagenauer,et al. Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.
[34] Emre Telatar,et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.
[35] Robert F. H. Fischer,et al. Information processing in soft-output decoding , 2001 .
[36] I. G. Núñez,et al. Generalized Hamming Weights for Linear Codes , 2001 .
[37] O. Milenkovic,et al. The Third Support Weight Enumerators of the Doubly-Even, Self-Dual Codes , 2003 .
[38] Olgica Milenkovic,et al. The third support weight enumerators of the doubly-even, self-dual [32, 16, 8] codes , 2003, IEEE Trans. Inf. Theory.
[39] Giuseppe Caire,et al. LDPC coding for interference mitigation at the transmitter , 2002 .
[40] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[41] Sergio Benedetto,et al. Convergence properties of iterative decoders working at bit and symbol level , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).
[42] Stephan ten Brink,et al. Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..
[43] Dariush Divsalar,et al. Low Complexity Turbo-like Codes , 2000 .
[44] M. Shokrollahi,et al. Capacity-achieving sequences , 2001 .
[45] F. Pollara,et al. Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.
[46] M. Aminshokrollahi. New sequences of linear time erasure codes approaching the channel capacity , 1999 .
[47] Krishna R. Narayanan. Effect of precoding on the convergence of turbo equalization for partial response channels , 2001, IEEE J. Sel. Areas Commun..
[48] Shlomo Shamai,et al. Extremes of information combining , 2005, IEEE Transactions on Information Theory.
[49] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[50] Dariush Divsalar,et al. Coding theorems for 'turbo-like' codes , 1998 .
[51] R. Gallager. Information Theory and Reliable Communication , 1968 .
[52] Michael Tuchler,et al. EXIT charts of irregular codes , 2002 .
[53] Simon Litsyn,et al. Simple MAP decoding of first-order Reed-Muller and Hamming codes , 2004, IEEE Transactions on Information Theory.
[54] Sergio Benedetto,et al. Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.
[55] Juriaan Simonis,et al. The effective length of subcodes , 1994, Applicable Algebra in Engineering, Communication and Computing.
[56] Michael Tüchler,et al. Design of Serially Concatenated Systems Depending on the Block Length , 2004, IEEE Trans. Commun..