Extrinsic information transfer functions: model and erasure channel properties

Extrinsic information transfer (EXIT) charts are a tool for predicting the convergence behavior of iterative processors for a variety of communication problems. A model is introduced that applies to decoding problems, including the iterative decoding of parallel concatenated (turbo) codes, serially concatenated codes, low-density parity-check (LDPC) codes, and repeat-accumulate (RA) codes. EXIT functions are defined using the model, and several properties of such functions are proved for erasure channels. One property expresses the area under an EXIT function in terms of a conditional entropy. A useful consequence of this result is that the design of capacity-approaching codes reduces to a curve-fitting problem for all the aforementioned codes. A second property relates the EXIT function of a code to its Helleseth-Klove-Levenshtein information functions, and thereby to the support weights of its subcodes. The relation is via a refinement of information functions called split information functions, and via a refinement of support weights called split support weights. Split information functions are used to prove a third property that relates the EXIT function of a linear code to the EXIT function of its dual.

[1]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[2]  S. Brink Rate one-half code for approaching the Shannon limit by 0.1 dB , 2000 .

[3]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[4]  Dariush Divsalar,et al.  Iterative turbo decoder analysis based on density evolution , 2001, IEEE J. Sel. Areas Commun..

[5]  S. Brink Convergence of iterative decoding , 1999 .

[6]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[7]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[8]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[9]  John T. Coffey,et al.  Trellis Structure and Higher Weights of Extremal Self-Dual Codes , 2001, Des. Codes Cryptogr..

[10]  J. Boutros,et al.  Iterative multiuser joint decoding: unified framework and asymptotic analysis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[11]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[12]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[13]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[14]  Torleiv Kløve,et al.  Support weight distribution of linear codes , 1992, Discret. Math..

[15]  Christine Bachoc On Harmonic Weight Enumerators of Binary Codes , 1999, Des. Codes Cryptogr..

[16]  Gian Mario Maggio,et al.  Analysis of the iterative decoding of LDPC and product codes using the Gaussian approximation , 2003, IEEE Trans. Inf. Theory.

[17]  Hesham El Gamal,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[18]  Torleiv Kløve,et al.  The weight distribution of irreducible cyclic codes with block lengths n1((q1-1)/N) , 1977, Discret. Math..

[19]  J. Macwilliams A theorem on the distribution of weights in a systematic code , 1963 .

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[22]  T. Aaron Gulliver,et al.  Higher Weights and Graded Rings for Binary Self-dual Codes , 2003, Discret. Appl. Math..

[23]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[24]  Stephan ten Brink,et al.  Designing Iterative Decoding Schemes with the Extrinsic Information Transfer Chart , 2001 .

[25]  Johannes B. Huber,et al.  Bounds on information combining , 2005, IEEE Transactions on Information Theory.

[26]  K. A. Semendyayev,et al.  Handbook of mathematics (3rd ed.) , 1997 .

[27]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[28]  Sae-Young Chung,et al.  On the construction of some capacity-approaching coding schemes , 2000 .

[29]  Amin Shokrollahi,et al.  Capacity-achieving sequences for the erasure channel , 2002, IEEE Trans. Inf. Theory.

[30]  Simon Huettinger,et al.  Information Processing and Combining in Channel Coding , 2004 .

[31]  Tor Helleseth,et al.  On the information function of an error-correcting code , 1997, IEEE Trans. Inf. Theory.

[32]  S. ten Brink,et al.  Code doping for triggering iterative decoding convergence , 2001 .

[33]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[34]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[35]  Robert F. H. Fischer,et al.  Information processing in soft-output decoding , 2001 .

[36]  I. G. Núñez,et al.  Generalized Hamming Weights for Linear Codes , 2001 .

[37]  O. Milenkovic,et al.  The Third Support Weight Enumerators of the Doubly-Even, Self-Dual Codes , 2003 .

[38]  Olgica Milenkovic,et al.  The third support weight enumerators of the doubly-even, self-dual [32, 16, 8] codes , 2003, IEEE Trans. Inf. Theory.

[39]  Giuseppe Caire,et al.  LDPC coding for interference mitigation at the transmitter , 2002 .

[40]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[41]  Sergio Benedetto,et al.  Convergence properties of iterative decoders working at bit and symbol level , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[42]  Stephan ten Brink,et al.  Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..

[43]  Dariush Divsalar,et al.  Low Complexity Turbo-like Codes , 2000 .

[44]  M. Shokrollahi,et al.  Capacity-achieving sequences , 2001 .

[45]  F. Pollara,et al.  Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.

[46]  M. Aminshokrollahi New sequences of linear time erasure codes approaching the channel capacity , 1999 .

[47]  Krishna R. Narayanan Effect of precoding on the convergence of turbo equalization for partial response channels , 2001, IEEE J. Sel. Areas Commun..

[48]  Shlomo Shamai,et al.  Extremes of information combining , 2005, IEEE Transactions on Information Theory.

[49]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[50]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[51]  R. Gallager Information Theory and Reliable Communication , 1968 .

[52]  Michael Tuchler,et al.  EXIT charts of irregular codes , 2002 .

[53]  Simon Litsyn,et al.  Simple MAP decoding of first-order Reed-Muller and Hamming codes , 2004, IEEE Transactions on Information Theory.

[54]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[55]  Juriaan Simonis,et al.  The effective length of subcodes , 1994, Applicable Algebra in Engineering, Communication and Computing.

[56]  Michael Tüchler,et al.  Design of Serially Concatenated Systems Depending on the Block Length , 2004, IEEE Trans. Commun..