Parameter estimation by implicit sampling
暂无分享,去创建一个
Matthias Morzfeld | Xuemin Tu | Alexandre J. Chorin | Jon Wilkening | A. Chorin | J. Wilkening | M. Morzfeld | Xuemin Tu
[1] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[2] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[3] A. Chorin,et al. Implicit particle filtering for models with partial noise, and an application to geomagnetic data assimilation , 2011, 1109.3664.
[4] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion , 2013, SIAM J. Sci. Comput..
[5] Brad Weir,et al. Implicit Estimation of Ecological Model Parameters , 2013, Bulletin of mathematical biology.
[6] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[7] A. Chorin,et al. Implicit Particle Methods and Their Connection with Variational Data Assimilation , 2012, 1205.1830.
[8] Matthias Morzfeld,et al. Conditions for successful data assimilation , 2013, 1303.2714.
[9] Ning Liu,et al. Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .
[10] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[11] Marco A. Iglesias,et al. Evaluation of Gaussian approximations for data assimilation in reservoir models , 2012, Computational Geosciences.
[12] Stefan Ulbrich,et al. Optimization with PDE Constraints , 2008, Mathematical modelling.
[13] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[14] Matthias Morzfeld,et al. Implicit particle filters for data assimilation , 2010, 1005.4002.
[15] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[16] Omar M. Knio,et al. Spectral Methods for Uncertainty Quantification , 2010 .
[17] A. Chorin,et al. Stochastic Tools in Mathematics and Science , 2005 .
[18] Eric Vanden-Eijnden,et al. DATA ASSIMILATION IN THE LOW NOISE, ACCURATE OBSERVATION REGIME WITH APPLICATION TO THE KUROSHIO CURRENT , 2012 .
[19] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[20] Kristine L. Bell,et al. A Tutorial on Particle Filters for Online Nonlinear/NonGaussian Bayesian Tracking , 2007 .
[21] Matthias Morzfeld,et al. Small-noise analysis and symmetrization of implicit Monte Carlo samplers , 2014 .
[22] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[23] Y. Marzouk,et al. A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .
[24] Rémi Bardenet,et al. Monte Carlo Methods , 2013, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[25] A. Stuart,et al. Ensemble Kalman methods for inverse problems , 2012, 1209.2736.
[26] Jun S. Liu,et al. Blind Deconvolution via Sequential Imputations , 1995 .
[27] P. Bickel,et al. Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.
[28] P. Bickel,et al. Sharp failure rates for the bootstrap particle filter in high dimensions , 2008, 0805.3287.
[29] Jonathan R Goodman,et al. Ensemble samplers with affine invariance , 2010 .
[30] E. Loh. Multigrid Monte Carlo methods , 1988 .
[31] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[32] Leonard F. Konikow,et al. Modeling Groundwater Flow and Pollution , 1988 .
[33] E. Vanden-Eijnden,et al. Data Assimilation in the Low Noise Regime with Application to the Kuroshio , 2012, 1202.4952.
[34] Dean S. Oliver. Minimization for conditional simulation: Relationship to optimal transport , 2014, J. Comput. Phys..
[35] P. Bickel,et al. Curse-of-dimensionality revisited : Collapse of importance sampling in very large scale systems , 2005 .
[36] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[37] A. Chorin,et al. Implicit Sampling, with Application to Data Assimilation , 2013, Chinese Annals of Mathematics, Series B.
[38] A. Chorin,et al. Implicit sampling for particle filters , 2009, Proceedings of the National Academy of Sciences.
[39] Yalchin Efendiev,et al. Preconditioning Markov Chain Monte Carlo Simulations Using Coarse-Scale Models , 2006, SIAM J. Sci. Comput..
[40] P. Bickel,et al. Obstacles to High-Dimensional Particle Filtering , 2008 .
[41] Tim Hesterberg,et al. Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.
[42] S OliverDean. Minimization for conditional simulation , 2014 .
[43] CLARK R. DOHRMANN,et al. A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..
[44] James Martin,et al. A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems, Part II: Stochastic Newton MCMC with Application to Ice Sheet Flow Inverse Problems , 2013, SIAM J. Sci. Comput..
[45] D. Oliver,et al. Recent progress on reservoir history matching: a review , 2011 .
[46] Matthias Morzfeld,et al. A random map implementation of implicit filters , 2011, J. Comput. Phys..
[47] Habib N. Najm,et al. Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..
[48] Andrew M. Stuart,et al. Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..
[49] R. P. Fedorenko. A relaxation method for solving elliptic difference equations , 1962 .
[50] Habib N. Najm,et al. Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..
[51] Youssef M. Marzouk,et al. Bayesian inference with optimal maps , 2011, J. Comput. Phys..
[52] Goodman,et al. Multigrid Monte Carlo method. Conceptual foundations. , 1989, Physical review. D, Particles and fields.