hCALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia

We report the first case of nonimmune hydrops fetalis (NIHF) associated with a recessive, in-frame deletion of V205 in the G protein–coupled receptor, Calcitonin Receptor-Like Receptor (hCALCRL). Homozygosity results in fetal demise from hydrops fetalis, while heterozygosity in females is associated with spontaneous miscarriage and subfertility. Using molecular dynamic modeling and in vitro biochemical assays, we show that the hCLR(V205del) mutant results in misfolding of the first extracellular loop, reducing association with its requisite receptor chaperone, receptor activity modifying protein (RAMP), translocation to the plasma membrane and signaling. Using three independent genetic mouse models we establish that the adrenomedullin–CLR–RAMP2 axis is both necessary and sufficient for driving lymphatic vascular proliferation. Genetic ablation of either lymphatic endothelial Calcrl or nonendothelial Ramp2 leads to severe NIHF with embryonic demise and placental pathologies, similar to that observed in humans. Our results highlight a novel candidate gene for human congenital NIHF and provide structure–function insights of this signaling axis for human physiology.

[1]  J. Simms,et al.  Data underpinning article "Molecular dynamic simulations of CLR/RAMP1 and CLR/RAMP2 heterodimers, with and without deletions of V205 in CLR" , 2018 .

[2]  S. Silberstein,et al.  Fremanezumab for the Preventive Treatment of Chronic Migraine , 2017, The New England journal of medicine.

[3]  P. Goadsby,et al.  A Controlled Trial of Erenumab for Episodic Migraine , 2017, The New England journal of medicine.

[4]  R. Helaers,et al.  Loss of ADAMTS3 activity causes Hennekam lymphangiectasia–lymphedema syndrome 3 , 2017, Human molecular genetics.

[5]  J. Simms,et al.  Relative Antagonism of Mutants of the CGRP Receptor Extracellular Loop 2 Domain (ECL2) Using a Truncated Competitive Antagonist (CGRP8-37): Evidence for the Dual Involvement of ECL2 in the Two-Domain Binding Model. , 2017, Biochemistry.

[6]  Chris de Graaf,et al.  Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators , 2017, Nature.

[7]  Hualiang Jiang,et al.  Structure of the full-length glucagon class B G protein-coupled receptor , 2017, Nature.

[8]  K. Caron,et al.  Lymphatic deletion of calcitonin receptor-like receptor exacerbates intestinal inflammation. , 2017, JCI insight.

[9]  M. Caron,et al.  Inhibiting clathrin-mediated endocytosis of the leucine-rich G protein-coupled receptor-5 diminishes cell fitness , 2017, The Journal of Biological Chemistry.

[10]  K. Caron,et al.  Endothelial Restoration of Receptor Activity–Modifying Protein 2 Is Sufficient to Rescue Lethality, but Survivors Develop Dilated Cardiomyopathy , 2016, Hypertension.

[11]  A. Hoischen,et al.  EPHB4 kinase–inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis , 2016, The Journal of clinical investigation.

[12]  Christopher A. Reynolds,et al.  Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties , 2016, The Journal of Biological Chemistry.

[13]  B. Hille,et al.  Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support , 2016, PloS one.

[14]  M. Caron,et al.  A rapid and affordable screening platform for membrane protein trafficking , 2015, BMC Biology.

[15]  U. Yallampalli,et al.  Involvement of Receptor Activity-Modifying Protein 3 (RAMP3) in the Vascular Actions of Adrenomedullin in Rat Mesenteric Artery Smooth Muscle Cells1 , 2015, Biology of reproduction.

[16]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[17]  A. Patapoutian,et al.  Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia , 2015, Nature Communications.

[18]  Shin Lin,et al.  Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis , 2015, Nature Communications.

[19]  G. Ladds,et al.  Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2)* , 2015, The Journal of Biological Chemistry.

[20]  R. Hennekam,et al.  Etiology of non‐immune hydrops fetalis: An update , 2015, American journal of medical genetics. Part A.

[21]  Rodrigo Lopez,et al.  The EMBL-EBI bioinformatics web and programmatic tools framework , 2015, Nucleic Acids Res..

[22]  R. Hennekam,et al.  Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome , 2014, Human Genetics.

[23]  A. Waggoner,et al.  Self-Checking Cell-Based Assays for GPCR Desensitization and Resensitization , 2014, Journal of biomolecular screening.

[24]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[25]  S. Mansour,et al.  The classification and diagnostic algorithm for primary lymphatic dysplasia: an update from 2010 to include molecular findings , 2013, Clinical genetics.

[26]  K. Caron,et al.  G-protein-coupled receptor 30 interacts with receptor activity-modifying protein 3 and confers sex-dependent cardioprotection. , 2013, Journal of molecular endocrinology.

[27]  A. Conner,et al.  Comparing the molecular pharmacology of CGRP and adrenomedullin. , 2013, Current protein & peptide science.

[28]  Ali Jazayeri,et al.  Structure of class B GPCR corticotropin-releasing factor receptor 1 , 2013, Nature.

[29]  M. Kadmiel,et al.  Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta. , 2013, The Journal of clinical investigation.

[30]  Rodrigo Lopez,et al.  Analysis Tool Web Services from the EMBL-EBI , 2013, Nucleic Acids Res..

[31]  N. Mochizuki,et al.  Vascular Endothelial Adrenomedullin-RAMP2 System Is Essential for Vascular Integrity and Organ Homeostasis , 2013, Circulation.

[32]  S. Mansour,et al.  FLT4/VEGFR3 and Milroy Disease: Novel Mutations, a Review of Published Variants and Database Update , 2013, Human mutation.

[33]  R. Gainetdinov,et al.  BRET biosensors to study GPCR biology, pharmacology, and signal transduction , 2012, Front. Endocrin..

[34]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[35]  M. Wheatley,et al.  The role of the extracellular loops of the CGRP receptor, a family B GPCR. , 2012, Biochemical Society transactions.

[36]  R. Hennekam,et al.  Non‐immune hydrops fetalis: A short review of etiology and pathophysiology , 2012, American journal of medical genetics. Part A.

[37]  R. Adams,et al.  Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. , 2012, Developmental cell.

[38]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[39]  D. Poyner,et al.  Extracellular loops 1 and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function , 2011, Biochimica et biophysica acta.

[40]  Y. Takei,et al.  Shared and separate functions of the RAMP-based adrenomedullin receptors , 2011, Peptides.

[41]  Y. Mukouyama,et al.  Whole-mount immunohistochemical analysis for embryonic limb skin vasculature: a model system to study vascular branching morphogenesis in embryo. , 2011, Journal of visualized experiments : JoVE.

[42]  M. Kadmiel,et al.  Research resource: Haploinsufficiency of receptor activity-modifying protein-2 (RAMP2) causes reduced fertility, hyperprolactinemia, skeletal abnormalities, and endocrine dysfunction in mice. , 2011, Molecular endocrinology.

[43]  Marco Biasini,et al.  Toward the estimation of the absolute quality of individual protein structure models , 2010, Bioinform..

[44]  A. Randenberg Nonimmune Hydrops Fetalis Part II: Does Etiology Influence Mortality? , 2010, Neonatal Network.

[45]  A. Randenberg Nonimmune Hydrops Fetalis Part I: Etiology and Pathophysiology , 2010, Neonatal Network.

[46]  S. Mansour,et al.  Linkage and sequence analysis indicate that CCBE1 is mutated in recessively inherited generalised lymphatic dysplasia , 2010, Human Genetics.

[47]  Ying Xu,et al.  Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning , 2009, The Journal of experimental medicine.

[48]  Torsten Schwede,et al.  Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective , 2009, Electrophoresis.

[49]  R. Hennekam,et al.  Etiology of nonimmune hydrops fetalis: A systematic review , 2009, American journal of medical genetics. Part A.

[50]  Carolina Wählby,et al.  BlobFinder, a tool for fluorescence microscopy image cytometry , 2009, Comput. Methods Programs Biomed..

[51]  K. Caron,et al.  Haploinsufficiency for Adrenomedullin Reduces Pinopodes and Diminishes Uterine Receptivity in Mice1 , 2008, Biology of reproduction.

[52]  F. Orsenigo,et al.  Sox18 induces development of the lymphatic vasculature in mice , 2008, Nature.

[53]  Torsten Schwede,et al.  The SWISS-MODEL Repository and associated resources , 2008, Nucleic Acids Res..

[54]  T. Sotnikova,et al.  Pharmacological Characterization of Membrane-Expressed Human Trace Amine-Associated Receptor 1 (TAAR1) by a Bioluminescence Resonance Energy Transfer cAMP Biosensor , 2008, Molecular Pharmacology.

[55]  James A J Fitzpatrick,et al.  Fluorogen-activating single-chain antibodies for imaging cell surface proteins , 2008, Nature Biotechnology.

[56]  K. Caron,et al.  Adrenomedullin signaling is necessary for murine lymphatic vascular development. , 2008, The Journal of clinical investigation.

[57]  T. Koyama,et al.  The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. , 2008, The Journal of clinical investigation.

[58]  D. Baker,et al.  Toward high-resolution prediction and design of transmembrane helical protein structures , 2007, Proceedings of the National Academy of Sciences.

[59]  M. Tsai,et al.  Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. , 2007, Genes & development.

[60]  O. Smithies,et al.  Receptor Activity-modifying Proteins 2 and 3 Have Distinct Physiological Functions from Embryogenesis to Old Age* , 2007, Journal of Biological Chemistry.

[61]  T. Magnuson,et al.  Reduced maternal expression of adrenomedullin disrupts fertility, placentation, and fetal growth in mice. , 2006, The Journal of clinical investigation.

[62]  R. Hennekam,et al.  Nonimmune idiopathic hydrops fetalis and congenital lymphatic dysplasia , 2006, American journal of medical genetics. Part A.

[63]  O. Smithies,et al.  Hydrops Fetalis, Cardiovascular Defects, and Embryonic Lethality in Mice Lacking the Calcitonin Receptor-Like Receptor Gene , 2006, Molecular and Cellular Biology.

[64]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[65]  J. Henley,et al.  Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane , 2005, Journal of Cell Science.

[66]  D. Smith,et al.  CL/RAMP2 and CL/RAMP3 produce pharmacologically distinct adrenomedullin receptors: a comparison of effects of adrenomedullin22–52, CGRP8–37 and BIBN4096BS , 2003, British journal of pharmacology.

[67]  R. Kingston,et al.  Calcium Phosphate Transfection , 2003, Current protocols in cell biology.

[68]  P. Sexton,et al.  Novel Receptor Partners and Function of Receptor Activity-modifying Proteins* , 2003, The Journal of Biological Chemistry.

[69]  P. Sexton,et al.  Receptor activity modifying proteins. , 2001, Cellular signalling.

[70]  O. Smithies,et al.  Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. W. Glynn,et al.  Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. , 2000, American journal of human genetics.

[72]  S. Angers,et al.  Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. , 2000, The Journal of clinical investigation.

[73]  S. Foord,et al.  Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor. , 1999, Journal of pharmacological and toxicological methods.

[74]  M. Asakawa,et al.  The RAMP2/CRLR complex is a functional adrenomedullin receptor in human endothelial and vascular smooth muscle cells , 1999, FEBS letters.

[75]  Melanie G. Lee,et al.  RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor , 1998, Nature.

[76]  A. Verkman,et al.  Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. , 1998, The Journal of clinical investigation.

[77]  K. Alitalo,et al.  Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[78]  K. Alitalo,et al.  A novel vascular endothelial growth factor, VEGF‐C, is a ligand for the Flt4 (VEGFR‐3) and KDR (VEGFR‐2) receptor tyrosine kinases. , 1996, The EMBO journal.

[79]  M. Apkon,et al.  Pathophysiology of hydrops fetalis. , 1995, Seminars in perinatology.

[80]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[81]  F. Collins,et al.  Chloride conductance expressed by delta F508 and other mutant CFTRs in Xenopus oocytes. , 1991, Science.

[82]  R. Brace Effects of outflow pressure on fetal lymph flow. , 1989, American journal of obstetrics and gynecology.

[83]  R. Hennekam,et al.  Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans , 2009, Nature Genetics.

[84]  Silvio C. E. Tosatto,et al.  Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust , 2009, Proteins.

[85]  Wolfgang Rieping,et al.  Bmc Structural Biology Relationship between Chemical Shift Value and Accessible Surface Area for All Amino Acid Atoms , 2009 .

[86]  P. Sexton,et al.  GPCR modulation by RAMPs. , 2006, Pharmacology & therapeutics.

[87]  R. Bukowski,et al.  Hydrops fetalis. , 2000, Clinics of Perinatology.

[88]  E. Kattner,et al.  Hydrops fetalis: manifestation in lysosomal storage diseases including Farber disease , 1997, European Journal of Pediatrics.

[89]  K. Alitalo,et al.  A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. , 1996, The EMBO journal.

[90]  G. Valenzuela,et al.  Effects of outflow pressure and vascular volume loading on thoracic duct lymph flow in adult sheep. , 1990, The American journal of physiology.