Electrochemical utilisation of chemical vapour deposition grown carbon nanotubes as sensors

Abstract We overview recent developments in the fabrication of the world’s smallest electrode, the carbon nanotube via chemical vapour deposition (CVD) and demonstrate how these electrodes are beneficially utilised and tailored towards the electrochemical sensing of target analytes. The use of carbon nanotubes arrays grown via CVD to beneficially tailor the arrays to their intended electro-analytical application is also highlighted.

[1]  Elizabeth C. Dickey,et al.  Model of carbon nanotube growth through chemical vapor deposition , 1999 .

[2]  P. Král,et al.  Nanoscale rotary motors driven by electron tunneling. , 2008, Physical review letters.

[3]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[4]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[5]  James F. Rusling,et al.  Peroxidase activity of enzymes bound to the ends of single-wall carbon nanotube forest electrodes , 2003 .

[6]  Low Pressure Chemical Vapor Deposition of Single-Wall Carbon Nanotubes , 2006 .

[7]  W. Han,et al.  Synthesis of GaN-carbon composite nanotubes and GaN nanorods by arc discharge in nitrogen atmosphere , 2000 .

[8]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[9]  Shui-Tong Lee,et al.  ZnO Nanotube Arrays as Biosensors for Glucose , 2009 .

[10]  Joseph Wang,et al.  Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes , 2004 .

[11]  R. R. Moore,et al.  Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. , 2004, Chemical communications.

[12]  A. Govindaraj,et al.  Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. , 2009, Nanoscale.

[13]  Joseph G. Shapter,et al.  The effects of the lengths and orientations of single-walled carbon nanotubes on the electrochemistry of nanotube-modified electrodes , 2007 .

[14]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[15]  Martin Pumera,et al.  Electrochemistry of a Whole Group of Compounds Affected by Metallic Impurities within Carbon Nanotubes , 2010 .

[16]  Qiang Gao,et al.  Application of multielectrode array modified with carbon nanotubes to simultaneous amperometric determination of dihydroxybenzene isomers , 2009 .

[17]  I. Mondragon,et al.  The growth of carbon nanotubes on large areas of silicon substrate using commercial iron oxide nanoparticles as a catalyst , 2010 .

[18]  J. Xie,et al.  Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. , 2009, Nano letters.

[19]  L. Nie,et al.  Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode , 2006 .

[20]  C. R. Raj,et al.  Carbon nanotube supported platinum nanoparticles for the voltammetric sensing of hydrazine , 2010 .

[21]  László Forró,et al.  Field emission from single-wall carbon nanotube films , 1998 .

[22]  P. Scharff,et al.  Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers , 2010 .

[23]  Philip G. Collins,et al.  A simple and robust electron beam source from carbon nanotubes , 1996 .

[24]  F. Hou,et al.  Controlled growth of high quality bamboo carbon nanotube arrays by the double injection chemical vapor deposition process , 2008 .

[25]  Gyula Eres,et al.  Pulsed growth of vertically aligned nanotube arrays with variable density. , 2010, ACS nano.

[26]  Qingyun Cai,et al.  An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite , 2009 .

[27]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[28]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[29]  Itamar Willner,et al.  Long-range electrical contacting of redox enzymes by SWCNT connectors. , 2004, Angewandte Chemie.

[30]  Rashid O. Kadara,et al.  Corrigendum: Understanding the Physicoelectrochemical Properties of Carbon Nanotubes: Current State of the Art , 2010 .

[31]  Chunhai Yang,et al.  Voltammetric Determination of Tinidazole Using a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[32]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[33]  Xiaobo Ji,et al.  Palladium Sub‐Nanoparticle Decorated ‘Bamboo’ Multi‐Walled Carbon Nanotubes Exhibit Electrochemical Metastability: Voltammetric Sensing in Otherwise Inaccessible pH Ranges , 2006 .

[34]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[35]  Fwu-Shan Sheu,et al.  Selective Voltammetric Detection of Uric Acid in the Presence of Ascorbic Acid at Well‐Aligned Carbon Nanotube Electrode , 2003 .

[36]  Mark Ching-Cheng Lin,et al.  Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge , 2001 .

[37]  Peter T. Lansbury,et al.  Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems , 1998 .

[38]  C. Banks,et al.  Multi-walled carbon nanotube modified basal plane pyrolytic graphite electrodes: Exploring heterogeneity, electro-catalysis and highlighting batch to batch variation , 2008 .

[39]  R. Reilly Carbon Nanotubes: Potential Benefits and Risks of Nanotechnology in Nuclear Medicine , 2007, Journal of Nuclear Medicine.

[40]  Yi-Ge Zhou,et al.  Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose , 2009 .

[41]  M. Kyotani,et al.  Superhard phase of single-wall carbon nanotube , 2002 .

[42]  S. Ciraci,et al.  Pressure-induced interlinking of carbon nanotubes , 2000, cond-mat/0008476.

[43]  Richard G Compton,et al.  Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. , 2006, Small.

[44]  Malcolm L. H. Green,et al.  Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes , 2008 .

[45]  O. Stéphan,et al.  Filling carbon nanotubes with metals by the arc-discharge method: the key role of sulfur , 1998 .

[46]  M. Pumera,et al.  Nanographite impurities dominate electrochemistry of carbon nanotubes. , 2010, Chemistry.

[47]  David L. Carroll,et al.  A Composite from Poly(m‐phenylenevinylene‐co‐2,5‐dioctoxy‐p‐phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics , 1998 .

[48]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[49]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[50]  Jun Li,et al.  Preparation of Nucleic Acid Functionalized Carbon Nanotube Arrays , 2002 .

[51]  Ray H. Baughman,et al.  Towering forests of nanotube trees , 2006, Nature nanotechnology.

[52]  C. Banks,et al.  Metallic impurity free carbon nanotube paste electrodes , 2010 .

[53]  D. Choi,et al.  Fabrication of free-standing carbon nanotube electrode arrays on a quartz wafer , 2010 .

[54]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[55]  H. Dai,et al.  Carbon nanotube arrays on silicon substrates and their possible application , 2000 .

[56]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[57]  D. Bethune,et al.  Vapor-phase self-assembly of carbon nanomaterials , 1996 .

[58]  Michael A. Wilson,et al.  Order in carbons produced by plasma arcing in the presence of cobalt , 2001 .

[59]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[60]  C. L. Cheung,et al.  Structural biology with carbon nanotube AFM probes. , 2000, Chemistry & biology.

[61]  Zhennan Gu,et al.  Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique , 2000 .

[62]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[63]  Joseph Wang,et al.  Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes , 2004 .

[64]  Dusan Losic,et al.  Protein electrochemistry using aligned carbon nanotube arrays. , 2003, Journal of the American Chemical Society.

[65]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[66]  G. Pan,et al.  The effect of catalyst concentration on the synthesis of single-wall carbon nanotubes. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[67]  C. Banks,et al.  Use of high-purity metal-catalyst-free multiwalled carbon nanotubes to avoid potential experimental misinterpretations. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[68]  Richard G Compton,et al.  Iron oxide particles are the active sites for hydrogen peroxide sensing at multiwalled carbon nanotube modified electrodes. , 2006, Nano letters.

[69]  Zhongfan Liu,et al.  Chemical Alignment of Oxidatively Shortened Single-Walled Carbon Nanotubes on Silver Surface , 2001 .

[70]  C. Banks,et al.  A facile approach for quantifying the density of defects (edge plane sites) of carbon nanomaterials and related structures. , 2011, Physical Chemistry, Chemical Physics - PCCP.

[71]  A. Huczko,et al.  Influence of boron on carbon arc plasma and formation of fullerenes and nanotubes , 1998 .

[72]  Richard G Compton,et al.  Carbon nanotubes contain metal impurities which are responsible for the "electrocatalysis" seen at some nanotube-modified electrodes. , 2006, Angewandte Chemie.

[73]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[74]  A. Fujiwara,et al.  Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method , 2007 .

[75]  Jichang Wang,et al.  Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe of glucose , 2011 .

[76]  M. Montminy,et al.  Diabetes: Outfoxing insulin resistance? , 2004, Nature.

[77]  N. Wu,et al.  The study of the attachment of a single-walled carbon nanotube to a self-assembled monolayer using X-ray photoelectron spectroscopy , 2000 .

[78]  Rashid O. Kadara,et al.  Understanding the Physicoelectrochemical Properties of Carbon Nanotubes: Current State of the Art , 2010 .

[79]  Haitao Huang,et al.  Bioelectrocatalytic application of titania nanotube array for molecule detection. , 2007, Biosensors & bioelectronics.

[80]  N. Ishigami,et al.  Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire. , 2008, Journal of the American Chemical Society.

[81]  I. Milošević,et al.  Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes , 1999 .

[82]  R. Compton,et al.  Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes , 2008 .

[83]  Mónica Moreno,et al.  Adsorptive Stripping Voltammetric Determination of Amitrole at a Multi‐Wall Carbon Nanotubes Paste Electdrode , 2005 .

[84]  Zhifeng Ren,et al.  Nanoelectrode arrays based on low site density aligned carbon nanotubes , 2003 .

[85]  Jaeboong Choi,et al.  Kinetics of catalyst size dependent carbon nanotube growth by growth interruption studies , 2010 .

[86]  Xiaobo Ji,et al.  Super-washing does not leave single walled carbon nanotubes iron-free. , 2007, The Analyst.

[87]  R. Compton,et al.  Apparent 'electrocatalytic' activity of multiwalled carbon nanotubes in the detection of the anaesthetic halothane: occluded copper nanoparticles. , 2006, The Analyst.

[88]  Wonbong Choi,et al.  Electrophoresis deposition of carbon nanotubes for triode-type field emission display , 2001 .

[89]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[90]  C. Banks,et al.  Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. , 2005, The Analyst.

[91]  A. Salimi,et al.  Amperometric Detection of Morphine at Preheated Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes , 2005 .

[92]  D. Lévesque,et al.  High Adsorptive Property of Opened Carbon Nanotubes at 77 K , 2000 .

[93]  Zhennan Gu,et al.  Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. , 2002, Analytical chemistry.

[94]  Wassana Yantasee,et al.  Carbon nanotubes based nanoelectrode arrays: Fabrication, evaluation, and application in voltammetric analysis , 2005 .

[95]  Guodong Liu,et al.  Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. , 2005, The Analyst.

[96]  C. Banks,et al.  New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite. , 2006, The Analyst.

[97]  Dongyan Ding,et al.  Synthesis of carbon nanostructures on nanocrystalline Ni-Ni3P catalyst supported by SiC whiskers , 2003 .

[98]  Yuan-Yao Li,et al.  Formation of carbon nanotubes from polyvinyl alcohol using arc-discharge method , 2004 .

[99]  Joseph Wang,et al.  Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes , 2004 .

[100]  B. Mcenaney,et al.  Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays , 2000 .

[101]  J. Justin Gooding,et al.  Achieving Direct Electrical Connection to Glucose Oxidase Using Aligned Single Walled Carbon Nanotube Arrays , 2005 .

[102]  A. Rinzler,et al.  Self-assembly of tubular fullerenes , 1995 .

[103]  O. Stéphan,et al.  Sulfur: the key for filling carbon nanotubes with metals , 1999 .

[104]  Dimitrios K. Kampouris,et al.  The Heterogeneity of Multiwalled and Single‐Walled Carbon Nanotubes: Iron Oxide Impurities Can Catalyze the Electrochemical Oxidation of Glucose , 2009 .

[105]  Fumio Kokai,et al.  Causes of different catalytic activities of metals in formation of single-wall carbon nanotubes , 2002 .

[106]  William R. Heineman,et al.  A nanotube array immunosensor for direct electrochemical detection of antigen–antibody binding , 2007 .

[107]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[108]  Yahachi Saito,et al.  Nanoparticles and filled nanocapsules , 1995 .

[109]  R. R. Moore,et al.  Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. , 2004, Analytical chemistry.

[110]  R. Chang,et al.  Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules , 1998 .

[111]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[112]  Guohua Zhao,et al.  A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO(2) nanotube arrays. , 2010, Environmental science & technology.

[113]  Pavel Nikolaev,et al.  Catalytic growth of single-walled manotubes by laser vaporization , 1995 .

[114]  K. Hata,et al.  Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts , 2006, Nature nanotechnology.

[115]  J Justin Gooding,et al.  Demonstration of the importance of oxygenated species at the ends of carbon nanotubes for their favourable electrochemical properties. , 2005, Chemical communications.

[116]  C. Banks,et al.  Single walled carbon nanotubes contain residual iron oxide impurities which can dominate their electrochemical activity , 2007 .

[117]  Lee Yook Heng,et al.  Demonstration of the advantages of using bamboo-like nanotubes for electrochemical biosensor applications compared with single walled carbon nanotubes , 2005 .

[118]  S. Dong,et al.  Electrocatalytic Oxidation of Catechol at Multi‐Walled Carbon Nanotubes Modified Electrode , 2004 .

[119]  I. Karube,et al.  The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors. , 2006, The Analyst.

[120]  W. Kang,et al.  Aligned carbon nanotubes fabricated by thermal CVD at atmospheric pressure using Co as catalyst with NH3 as reactive gas , 2006 .

[121]  Zafar Iqbal,et al.  A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells , 2007 .

[122]  Rashid O. Kadara,et al.  Metallic Free Carbon Nanotube Cluster Modified Screen Printed Electrodes for the Sensing of Nicotine in Artificial Saliva , 2009 .

[123]  Fwu-Shan Sheu,et al.  Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes , 2004 .

[124]  Robert P. H. Chang,et al.  Field emission from nanotube bundle emitters at low fields , 1997 .

[125]  Xi‐Wen Du,et al.  Bamboo-shaped carbon nanotubes produced by catalytic decomposition of methane over nickel nanoparticles supported on aluminum , 2007 .

[126]  C. R. Raj,et al.  Electrocatalytic performance of carbon nanotube-supported palladium particles in the oxidation of formic acid and the reduction of oxygen , 2010 .

[127]  Shengfu Wang,et al.  Square Wave Voltammetry Determination of Brucine at Multiwall Carbon Nanotube‐Modified Glassy Carbon Electrodes , 2005 .

[128]  Keiichi Kaneto,et al.  Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. , 2007, Biosensors & bioelectronics.

[129]  R. Chang,et al.  Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors , 1996 .