Thermodynamic and Kinetic Characteristics of Spinodal Decomposition in Ternary Alloys

The phase decomposition of hypothetic A–B–C alloys was analyzed using the phase-field method based on the numerical solution of the Cahn–Hilliard equation. The effect of the interaction parameters on the growth kinetics of phase decomposition was also studied. The results indicated that the driving force was the fastest if all the three interaction parameters were equal, promoting the quickest growth kinetics of the ternary alloy. The phase decomposition occurred spinodally and caused the formation of three phases, A-rich, B-rich, and C-rich. In this case, the spinodal curve formed an isolated island. If one or two interaction parameters are equal to zero, the growth kinetics is slower. This condition originated only the formation of two decomposed phases with the chemical composition of either one element or two elements depending on the interaction parameters. Likewise, the spinodal curve is not completely located within the isothermal section.

[1]  S. Shi,et al.  Phase field modeling for the morphological and microstructural evolution of metallic materials under environmental attack , 2021, npj Computational Materials.

[2]  D. Raabe,et al.  Phase-Field Modeling of Chemoelastic Binodal/Spinodal Relations and Solute Segregation to Defects in Binary Alloys , 2021, Materials.

[3]  K. Saida,et al.  Establishment of a theoretical model based on the phase-field method for predicting the γ phase precipitation in Fe–Cr–Ni ternary alloys , 2021 .

[4]  Kunok Chang,et al.  Effect of Al Concentration on the Microstructural Evolution of Fe-Cr-Al Systems: A Phase-Field Approach , 2020, Metals.

[5]  M. Saucedo-Muñoz,et al.  Analysis of Spinodal Decomposition in Al-Zn and Al-Zn-Cu Alloys Using the Nonlinear Cahn-Hilliard Equation , 2017 .

[6]  I. Abrikosov,et al.  Spinodal decomposition in ternary Fe-Cr-Co system , 2017 .

[7]  S. B. Biner Programming Phase-Field Modeling , 2017 .

[8]  H. Du,et al.  Numerical simulation of phase separation in Fe–Cr–Mo ternary alloys , 2016 .

[9]  R. Abart,et al.  Exsolution by spinodal decomposition in multicomponent mineral solutions , 2012, Acta materialia.

[10]  E. O. Avila-Davila,et al.  Simulación numérica de la descomposición espinodal en sistemas de aleación hipotéticos A-B y A-B-C , 2012 .

[11]  P. Staron,et al.  Spinodal decomposition in Fe-25 at%Co-9 at%Mo , 2010 .

[12]  Nikolas Provatas,et al.  Phase-Field Methods in Materials Science and Engineering , 2010 .

[13]  I. Steinbach Phase-field models in materials science , 2009 .

[14]  M. Saucedo-Muñoz,et al.  Microstructural simulation in spinodally-decomposed Cu–70 at.%Ni and Cu–46 at.%Ni–4 at.%Fe alloys , 2009 .

[15]  Taiji Nishizawa,et al.  Thermodynamics of Microstructures , 2008 .

[16]  K. Shizawa,et al.  A Phase-Field Simulation of Nucleation from Subgrain and Grain Growth in Static Recrystallization , 2008 .

[17]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[18]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[19]  T. Aoki,et al.  Kinetics of phase separation in Fe-Cr-Mo ternary alloys , 2002 .

[20]  H. Dorantes-Rosales,et al.  Phase Decomposition during Aging for Cu-Ni-Cr Alloys. , 2001 .

[21]  Thomas Wanner,et al.  Spinodal Decomposition for Multicomponent Cahn–Hilliard Systems , 2000 .

[22]  K. F. Russell,et al.  Phase separation in the FeCrNi system , 1996 .

[23]  Y. Nakamura,et al.  Spinodal decomposition of Fe−Cr−Ni alloys studied by Mössbauer spectroscopy , 1996 .

[24]  Long-Qing Chen Computer simulation of spinodal decomposition in ternary systems , 1994 .

[25]  N. Sano,et al.  A study of phase decomposition in CuNiFe alloys , 1993 .

[26]  Jeffrey J. Hoyt,et al.  Spinodal decomposition in ternary alloys , 1989 .

[27]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[28]  K. Binder Kinetic ising model study of phase separation in binary alloys , 1974 .

[29]  D. Fontaine An analysis of clustering and ordering in multicomponent solid solutions—II fluctuations and kinetics , 1973 .

[30]  D. de Fontaine,et al.  An analysis of clustering and ordering in multicomponent solid solutions—I. Stability criteria , 1972 .

[31]  John W. Cahn,et al.  Spinodal decomposition in ternary systems , 1971 .