On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier–Stokes equations
暂无分享,去创建一个
[1] S. Shkoller,et al. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains , 2001 .
[2] A. Bensoussan,et al. Equations stochastiques du type Navier-Stokes , 1973 .
[3] Hannelore. Breckner. Approximation and optimal control of the stochastic Navier-Stokes equation , 1999 .
[4] B. L. Rozovskii,et al. Global L2-solutions of stochastic Navier–Stokes equations , 2005 .
[5] José A. Langa,et al. Existence and Regularity of the Pressure for the Stochastic Navier–Stokes Equations , 2003 .
[6] É. Pardoux,et al. Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .
[7] J. Marsden,et al. Global well–posedness for the Lagrangian averaged Navier–Stokes (LANS–α) equations on bounded domains , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[8] Boris Rozovskii,et al. Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..
[9] Leonard M. Adleman,et al. Proof of proposition 3 , 1992 .
[10] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[11] Alain Bensoussan,et al. Stochastic Navier-Stokes Equations , 1995 .
[12] Darryl D. Holm,et al. Boundary Effects on Exact Solutions of the Lagrangian-Averaged Navier–Stokes-α Equations , 2003 .
[13] T. Caraballo,et al. COMPARISON OF THE LONG-TIME BEHAVIOR OF LINEAR ITO AND STRATONOVICH PARTIAL DIFFERENTIAL EQUATIONS , 2001 .
[14] Darryl D. Holm,et al. The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.