On the existence and uniqueness of solutions to stochastic three-dimensional Lagrangian averaged Navier–Stokes equations

We prove the existence and uniqueness of solutions for a stochastic version of the three-dimensional Lagrangian averaged Navier–Stokes equation in a bounded domain. To this end, we previously prove some existence and uniqueness results for an abstract stochastic equation and justify that our model falls within this framework.

[1]  S. Shkoller,et al.  Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains , 2001 .

[2]  A. Bensoussan,et al.  Equations stochastiques du type Navier-Stokes , 1973 .

[3]  Hannelore. Breckner Approximation and optimal control of the stochastic Navier-Stokes equation , 1999 .

[4]  B. L. Rozovskii,et al.  Global L2-solutions of stochastic Navier–Stokes equations , 2005 .

[5]  José A. Langa,et al.  Existence and Regularity of the Pressure for the Stochastic Navier–Stokes Equations , 2003 .

[6]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[7]  J. Marsden,et al.  Global well–posedness for the Lagrangian averaged Navier–Stokes (LANS–α) equations on bounded domains , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Boris Rozovskii,et al.  Stochastic Navier-Stokes Equations for Turbulent Flows , 2004, SIAM J. Math. Anal..

[9]  Leonard M. Adleman,et al.  Proof of proposition 3 , 1992 .

[10]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[11]  Alain Bensoussan,et al.  Stochastic Navier-Stokes Equations , 1995 .

[12]  Darryl D. Holm,et al.  Boundary Effects on Exact Solutions of the Lagrangian-Averaged Navier–Stokes-α Equations , 2003 .

[13]  T. Caraballo,et al.  COMPARISON OF THE LONG-TIME BEHAVIOR OF LINEAR ITO AND STRATONOVICH PARTIAL DIFFERENTIAL EQUATIONS , 2001 .

[14]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.