Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations

The paper is concerned with the unconditional stability and convergence of characteristics type methods for the time-dependent Navier–Stokes equations. We present optimal error estimates in $$L^2$$L2 and $$H^1$$H1 norms for a typical modified characteristics finite element method unconditionally, while all previous works require certain time-step restrictions. The analysis is based on an iterated characteristic time-discrete system, with which the error function is split into a temporal error and a spatial error. With a rigorous analysis to the characteristic time-discrete system, we prove that the difference between the numerical solution and the solution of the time-discrete system is $$\tau $$τ-independent, where $$\tau $$τ denotes the time stepsize. Thus numerical solution in $$W^{1,\infty }$$W1,∞ is bounded and optimal error estimates can be obtained in a traditional way. Numerical results confirm our analysis and show clearly the unconditional stability and convergence of the modified characteristics finite element method for the time-dependent Navier–Stokes equations. The approach used in this paper can be easily extended to many other characteristics-based methods.

[1]  Rodolfo Bermejo,et al.  Finite element modified method of characteristics for the Navier–Stokes equations , 2000 .

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  Hongxing Rui,et al.  A second order characteristic finite element scheme for convection-diffusion problems , 2002, Numerische Mathematik.

[4]  C. R. Ethier,et al.  A characteristic/finite element algorithm for time-dependent 3-D advection-dominated transport using unstructured grids , 2003 .

[5]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in one space variable , 1986 .

[6]  D. W. Peaceman,et al.  Numerical Calculation of Multidimensional Miscible Displacement by the Method of Characteristics , 1964 .

[7]  Zhiyong Si Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems , 2011, Numerical Algorithms.

[8]  Zhiyong Si,et al.  Modified Characteristics Gauge–Uzawa Finite Element Method for Time Dependent Conduction–Convection Problems , 2014, J. Sci. Comput..

[9]  Yvon Maday,et al.  A high order characteristics method for the incompressible Navier—Stokes equations , 1994 .

[10]  Rodolfo Bermejo,et al.  Modified Lagrange–Galerkin methods of first and second order in time for convection–diffusion problems , 2012, Numerische Mathematik.

[11]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[12]  Mary F. Wheeler,et al.  Some improved error estimates for the modified method of characteristics , 1989 .

[13]  T. F. Russell,et al.  Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media , 1985 .

[14]  Buyang Li,et al.  The stability and convergence of fully discrete galerkin-galerkin fems for porous medium flows , 2014 .

[15]  Rodolfo Bermejo,et al.  A Second Order in Time Modified Lagrange-Galerkin Finite Element Method for the Incompressible Navier-Stokes Equations , 2012, SIAM J. Numer. Anal..

[16]  Yvon Maday,et al.  A high-order characteristics/finite element method for the incompressible Navier-Stokes equations , 1997 .

[17]  M. Zlámal Curved Elements in the Finite Element Method. I , 1973 .

[18]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[19]  Johnny Guzmán,et al.  Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra , 2012, Math. Comput..

[20]  Carlos Vázquez,et al.  Numerical Analysis of Convection-Diffusion-Reaction Problems with Higher Order Characteristics/Finite Elements. Part I: Time Discretization , 2006, SIAM J. Numer. Anal..

[21]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[22]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[23]  Richard E. Ewing,et al.  EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHODS FOR VARIABLE-COEFFICIENT ADVECTIVE-DIFFUSIVE­ REACTIVE EQUATIONS IN GROUNDWATER CONTAMINANT TRANSPORT , 1994 .

[24]  Jörn Sesterhenn,et al.  A characteristic-type formulation of the Navier–Stokes equations for high order upwind schemes , 2000 .

[25]  Ricardo H. Nochetto,et al.  Maximum-norm stability of the finite element Stokes projection , 2005 .

[26]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[27]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[28]  Richard E. Ewing,et al.  An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems , 1996 .

[29]  Hong Wang,et al.  An Optimal-Order Error Estimate for a Family of ELLAM-MFEM Approximations to Porous Medium Flow , 2008, SIAM J. Numer. Anal..

[30]  Xiaobing Feng,et al.  A Modified Characteristic Finite Element Method for a Fully Nonlinear Formulation of the Semigeostrophic Flow Equations , 2008, SIAM J. Numer. Anal..

[31]  R. Temam,et al.  Navier-stokes equations: Theory and approximation , 1998 .

[32]  Carlos Vázquez,et al.  Numerical Analysis of Convection-Diffusion-Reaction Problems with Higher Order Characteristics/Finite Elements. Part II: Fully Discretized Scheme and Quadrature Formulas , 2006, SIAM J. Numer. Anal..

[33]  T. F. Russell,et al.  A finite element alternating-direction method combined with a modified method of characteristics for convection-diffusion problems , 1989 .

[34]  Yinnian He,et al.  Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations , 2005, Math. Comput..

[35]  Endre Süli,et al.  Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations , 1988 .

[36]  J. Rossmann,et al.  Elliptic Equations in Polyhedral Domains , 2010 .

[37]  Hong Wang,et al.  A summary of numerical methods for time-dependent advection-dominated partial differential equations , 2001 .

[38]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[39]  A. R. Mitchell,et al.  Curved elements in the finite element method , 1974 .

[40]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[41]  Jie Shen,et al.  On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations , 1992 .

[42]  Peter Hansbo,et al.  The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations , 1992 .

[43]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[44]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[45]  Ke Shi,et al.  Superconvergent HDG Methods on Isoparametric Elements for Second-Order Elliptic Problems , 2012, SIAM J. Numer. Anal..

[46]  Dong Liang,et al.  An efficient second‐order characteristic finite element method for non‐linear aerosol dynamic equations , 2009, International Journal for Numerical Methods in Engineering.

[47]  Jean-Luc Guermond,et al.  Convergence Analysis of a Finite Element Projection/Lagrange-Galerkin Method for the Incompressible Navier-Stokes Equations , 2000, SIAM J. Numer. Anal..