Electron holography of field-emitting carbon nanotubes.

Electron holography performed in situ inside a high resolution transmission electron microscope has been used to determine the magnitude and spatial distribution of the electric field surrounding individual field-emitting carbon nanotubes. The electric field (and hence the associated field emission current) is concentrated precisely at the tips of the nanotubes and not at other nanotube defects such as sidewall imperfections. The electric field magnitude and distribution are stable in time, even in cases where the nanotube field emission current exhibits extensive temporal fluctuations.

[1]  Zhong Lin Wang,et al.  Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM , 2000 .

[2]  de Heer WA,et al.  Nanomeasurements in Transmission Electron Microscopy. , 2000, Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada.

[3]  B. Chalamala,et al.  Current saturation mechanisms in carbon nanotube field emitters , 2000 .

[4]  Philip G. Collins,et al.  UNIQUE CHARACTERISTICS OF COLD CATHODE CARBON-NANOTUBE-MATRIX FIELD EMITTERS , 1997 .

[5]  Philip G. Collins,et al.  A simple and robust electron beam source from carbon nanotubes , 1996 .

[6]  V. Dravid,et al.  Mapping the potential of graphite nanotubes with electron holography , 1996 .

[7]  P. Nordlander,et al.  Unraveling Nanotubes: Field Emission from an Atomic Wire , 1995, Science.

[8]  Orchowski,et al.  Electron holography surmounts resolution limit of electron microscopy. , 1995, Physical review letters.

[9]  J. Spence,et al.  Investigation of STM image artifacts by in-situ reflection electron microscopy , 1993 .

[10]  G. Pozzi,et al.  Electron holography in the study of the electrostatic fields: the case of charged microtips , 1992 .

[11]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[12]  Chen,et al.  Mapping of microelectrostatic fields by means of electron holography: Theoretical and experimental results. , 1989, Physical review. A, General physics.

[13]  Kobayashi,et al.  Magnetic field observation of a single flux quantum by electron-holographic interferometry. , 1989, Physical review letters.

[14]  Akira Tonomura,et al.  Applications of electron holography , 1987 .

[15]  W. Rothemund,et al.  MEASUREMENT OF CONTACT POTENTIAL DIFFERENCES BY ELECTRON INTERFEROMETRY , 1964 .

[16]  D. Bohm,et al.  Significance of Electromagnetic Potentials in the Quantum Theory , 1959 .

[17]  G. Möllenstedt,et al.  Elektroneninterferometrische Messung des inneren Potentials , 1957 .

[18]  D. Gabor A New Microscopic Principle , 1948, Nature.

[19]  G. Möllenstedt,et al.  Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen , 2004, Naturwissenschaften.

[20]  David C. Joy,et al.  Introduction to electron holography , 1999 .

[21]  N. Webber,et al.  Association between atherosclerosis and osteoporosis, the role of vitamin D , 2011, Archives of medical science : AMS.