A consistent and versatile computational approach for general fluid‐structure‐contact interaction problems

[1]  F P T Baaijens,et al.  A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. , 2003, Journal of biomechanics.

[2]  A P Yoganathan,et al.  Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. , 2000, Journal of biomechanical engineering.

[3]  Mats G. Larson,et al.  A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem , 2013, 1311.2431.

[4]  Peter Hansbo,et al.  Fictitious domain methods using cut elements: III. A stabilized Nitsche method for Stokes’ problem , 2014 .

[5]  O. Reynolds IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil , 1886, Philosophical Transactions of the Royal Society of London.

[6]  Wolfgang A. Wall,et al.  An accurate, robust, and easy-to-implement method for integration over arbitrary polyhedra: Application to embedded interface methods , 2014, J. Comput. Phys..

[7]  Wolfgang A. Wall,et al.  3D fluid–structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach , 2010 .

[8]  Benedikt Schott,et al.  A consistent approach for fluid‐structure‐contact interaction based on a porous flow model for rough surface contact , 2018, International Journal for Numerical Methods in Engineering.

[9]  T. Wick Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity , 2014 .

[10]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[11]  Wolfgang A. Wall,et al.  Segment-based vs. element-based integration for mortar methods in computational contact mechanics , 2015 .

[12]  Franz Chouly,et al.  An unbiased Nitsche’s formulation of large deformation frictional contact and self-contact , 2017 .

[13]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[14]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[15]  Jean-Frédéric Gerbeau,et al.  A partitioned fluid-structure algorithm for elastic thin valves with contact , 2008 .

[16]  Daniel M Espino,et al.  Evaluation of a transient, simultaneous, arbitrary Lagrange–Euler based multi-physics method for simulating the mitral heart valve , 2014, Computer methods in biomechanics and biomedical engineering.

[17]  Miguel A. Fernández,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[18]  Neil J. Balmforth,et al.  Contact in a viscous fluid. Part 1. A falling wedge , 2010, Journal of Fluid Mechanics.

[19]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[20]  Schalk Kok,et al.  An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact , 2016 .

[21]  Alfio Quarteroni,et al.  Numerical modeling of heart valves using resistive Eulerian surfaces , 2016, International journal for numerical methods in biomedical engineering.

[22]  Wolfgang A. Wall,et al.  Nitsche’s method for finite deformation thermomechanical contact problems , 2018, Computational Mechanics.

[23]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[24]  Matteo Astorino,et al.  Fluid-structure interaction and multi-body contact. Application to aortic valves , 2009 .

[25]  Benedikt Schott,et al.  A stabilized Nitsche cut finite element method for the Oseen problem , 2016, 1611.02895.

[26]  Peter Hansbo,et al.  The Penalty-Free Nitsche Method and Nonconforming Finite Elements for the Signorini Problem , 2016, SIAM J. Numer. Anal..

[27]  Benedikt Schott,et al.  A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity , 2018, Computer Methods in Applied Mechanics and Engineering.

[28]  Roger A. Sauer,et al.  An unbiased computational contact formulation for 3D friction , 2015 .

[29]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[30]  Daniel M. Espino,et al.  Transient large strain contact modelling: A comparison of contact techniques for simultaneous fluid–structure interaction , 2015 .

[31]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[32]  Matthieu Hillairet,et al.  Collisions in Three-Dimensional Fluid Structure Interaction Problems , 2009, SIAM J. Math. Anal..

[33]  Erik Burman,et al.  A Nitsche-based formulation for fluid-structure interactions with contact , 2018, ESAIM: Mathematical Modelling and Numerical Analysis.

[34]  Franz Chouly,et al.  An unbiased Nitsche’s approximation of the frictional contact between two elastic structures , 2018, Numerische Mathematik.

[35]  I. Borazjani Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves , 2013 .

[36]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[37]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[38]  W. Wall,et al.  A face‐oriented stabilized Nitsche‐type extended variational multiscale method for incompressible two‐phase flow , 2015 .

[39]  W. Wall,et al.  A Nitsche cut finite element method for the Oseen problem with general Navier boundary conditions , 2017, 1706.05897.

[40]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[41]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[42]  David G'erard-Varet,et al.  The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow , 2013, 1302.7098.

[43]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[44]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[45]  Yinghua Liu,et al.  A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures , 2019 .

[46]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[47]  D. Gérard-Varet,et al.  Regularity Issues in the Problem of Fluid Structure Interaction , 2008, 0805.2654.

[48]  Wolfgang A. Wall,et al.  Unified computational framework for the efficient solution of n-field coupled problems with monolithic schemes , 2016, 1605.01522.

[49]  Benedikt Schott,et al.  Monolithic cut finite element–based approaches for fluid‐structure interaction , 2018, International Journal for Numerical Methods in Engineering.

[50]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[51]  G. Querzoli,et al.  Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves , 2017, Journal of Fluid Mechanics.

[52]  Patrick D. Anderson,et al.  A fluid-structure interaction method with solid-rigid contact for heart valve dynamics , 2006, J. Comput. Phys..

[53]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[54]  Hans-Jürgen Butt,et al.  Boundary slip in Newtonian liquids: a review of experimental studies , 2005 .