Solid-state batteries designed with high ion conductive composite polymer electrolyte and silicon anode

[1]  Wei Weng,et al.  Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries , 2021 .

[2]  Chaohe Xu,et al.  Graphene Oxide Enabled Flexible PEO-Based Solid Polymer Electrolyte for All-Solid-State Lithium Metal Battery , 2021 .

[3]  Junsheng Li,et al.  3D Coral-like LLZO/PVDF Composite Electrolytes with Enhanced Ionic Conductivity and Mechanical Flexibility for Solid-State Lithium Batteries. , 2020, ACS applied materials & interfaces.

[4]  Peixin Zhang,et al.  [BMIM]BF4-modified PVDF-HFP composite polymer electrolyte for high-performance solid-state lithium metal battery , 2020 .

[5]  W. Lu,et al.  High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery , 2020, Journal of Energy Chemistry.

[6]  X. Sun,et al.  Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes , 2020 .

[7]  Qi Zhang,et al.  Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries , 2020 .

[8]  Chaodi Xu,et al.  Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries , 2020, Nature Materials.

[9]  Donghai Wang,et al.  Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface , 2020 .

[10]  Xiulin Fan,et al.  Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries , 2020, Nature Energy.

[11]  Henghui Xu,et al.  Enhanced Surface Interactions Enable Fast Li+ Conduction in Oxide/Polymer Composite Electrolyte. , 2019, Angewandte Chemie.

[12]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[13]  Changhong Wang,et al.  H2O-Mediated Synthesis of Superionic Halide Solid Electrolyte. , 2019, Angewandte Chemie.

[14]  Qian Sun,et al.  Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries , 2019, Energy Storage Materials.

[15]  Hongkyung Lee,et al.  Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization , 2019, Nature Energy.

[16]  Henghui Xu,et al.  High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide) , 2019, Proceedings of the National Academy of Sciences.

[17]  Ying Guo,et al.  Flexible Organic–Inorganic Composite Solid Electrolyte with Asymmetric Structure for Room Temperature Solid-State Li-Ion Batteries , 2019, ACS Sustainable Chemistry & Engineering.

[18]  Jose L. Mendoza-Cortes,et al.  Stabilizing polymer electrolytes in high-voltage lithium batteries , 2019, Nature Communications.

[19]  Xiaokun Zhang,et al.  Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries , 2019, Nature Nanotechnology.

[20]  Haihui Wang,et al.  Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework , 2019, Energy & Environmental Science.

[21]  Zhaohui Li,et al.  Fabrication and electrochemical properties of LATP/PVDF composite electrolytes for rechargeable lithium-ion battery , 2018, Solid State Ionics.

[22]  Shanhui Fan,et al.  A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension , 2018, Science Advances.

[23]  Yonghong Deng,et al.  A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode , 2018, Journal of Power Sources.

[24]  Jian-jun Zhang,et al.  A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery , 2018 .

[25]  Kang Xu,et al.  Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries , 2018 .

[26]  Kamruzzaman,et al.  Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte , 2017 .

[27]  Yang Shen,et al.  Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. , 2017, Journal of the American Chemical Society.

[28]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[29]  Claudio Martínez,et al.  Cover Picture: Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions (Angew. Chem. Int. Ed. 1/2016) , 2016 .

[30]  Kazunori Takada,et al.  Progress and prospective of solid-state lithium batteries , 2013 .

[31]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[32]  Prashant N. Kumta,et al.  Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. , 2010, ACS nano.

[33]  Seok-Gwang Doo,et al.  Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. , 2008, Journal of the American Chemical Society.

[34]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[35]  Xiaogang Han,et al.  Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries , 2021 .

[36]  V. Thangadurai,et al.  LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li–S batteries , 2020 .

[37]  Hui Wu,et al.  One-pot solution coating of high quality LiF layer to stabilize Li metal anode , 2019, Energy Storage Materials.