Analysis of Saturated Belief Propagation Decoding of Low-Density Parity-Check Codes

We consider the effect of log-likelihood ratio saturation on the belief-propagation decoding of low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on the error-floor performance. Our focus is on threshold analysis and the stability of density evolution. We analyze the decoder for standard low-density parity-check code ensembles and show that belief-propagation decoding generally degrades gracefully with saturation. Stability of density evolution is, on the other hand, rather strongly affected by saturation, and the asymptotic qualitative effect of saturation is similar to reduction by one of variable-node degree. We also describe conditions under which the block-error threshold for saturated belief-propagation decoding equals the bit-error threshold.

[1]  Rüdiger L. Urbanke,et al.  Degree Optimization and Stability Condition for the Min-Sum Decoder , 2007, 2007 IEEE Information Theory Workshop.

[2]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[3]  Rüdiger L. Urbanke,et al.  Spatially Coupled Ensembles Universally Achieve Capacity Under Belief Propagation , 2013, IEEE Trans. Inf. Theory.

[4]  Shashi Kiran Chilappagari,et al.  Failures and Error Floors of Iterative Decoders , 2014 .

[5]  N. Kanistras,et al.  Impact of LLR saturation and quantization on LDPC min-sum decoders , 2010, 2010 IEEE Workshop On Signal Processing Systems.

[6]  Michael Lentmaier,et al.  An analysis of the block error probability performance of iterative decoding , 2005, IEEE Transactions on Information Theory.

[7]  H. Levy,et al.  Efficiency analysis of choices involving risk , 1969 .

[8]  Paul H. Siegel,et al.  Error Floor Approximation for LDPC Codes in the AWGN Channel , 2014, IEEE Trans. Inf. Theory.

[9]  Shuai Zhang,et al.  On the dynamics of the error floor behavior in regular LDPC codes , 2009, 2009 IEEE Information Theory Workshop.

[10]  Paul H. Siegel,et al.  Quantized min-sum decoders with low error floor for LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[11]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[12]  Hui Jin,et al.  Block Error Iterative Decoding Capacity for LDPC Codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[13]  Rüdiger L. Urbanke,et al.  Wave-Like Solutions of General 1-D Spatially Coupled Systems , 2015, IEEE Transactions on Information Theory.

[14]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[15]  Xiaojie Zhang,et al.  Will the real error floor please stand up? , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[16]  Richard D. Wesel,et al.  Soft Information for LDPC Decoding in Flash: Mutual-Information Optimized Quantization , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[17]  Vassilis Paliouras,et al.  Propagation of LLR Saturation and Quantization Error in LDPC Min-Sum Iterative Decoding , 2012, 2012 IEEE Workshop on Signal Processing Systems.

[18]  Shuai Zhang,et al.  Controlling the Error Floor in LDPC Decoding , 2012, IEEE Transactions on Communications.

[19]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[20]  Rüdiger L. Urbanke,et al.  Wave-Like Solutions of General One-Dimensional Spatially Coupled Systems , 2012, ArXiv.

[21]  Paul H. Siegel,et al.  Quantized Iterative Message Passing Decoders with Low Error Floor for LDPC Codes , 2012, IEEE Transactions on Communications.

[22]  C. Villani Optimal Transport: Old and New , 2008 .

[23]  A. Robert Calderbank,et al.  On the capacity of the discrete-time channel with uniform output quantization , 2009, 2009 IEEE International Symposium on Information Theory.

[24]  Rüdiger L. Urbanke,et al.  Existence and uniqueness of GEXIT curves via the Wasserstein metric , 2011, 2011 IEEE Information Theory Workshop.