Structural and electronic properties of collapsed armchair single-walled α-graphyne nanotubes

[1]  A. Latgé,et al.  Exploring the enhancement of the thermoelectric properties of bilayer graphyne nanoribbons. , 2022, Physical chemistry chemical physics : PCCP.

[2]  A. G. S. Filho,et al.  Structural and electronic properties of double-walled α-graphyne nanotubes , 2021, Computational Materials Science.

[3]  J. Zuo,et al.  Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes , 2021, Nature Electronics.

[4]  U. Sarkar,et al.  Thermoelectric Properties of Pristine Graphyne and the BN-Doped Graphyne Family , 2021, ACS omega.

[5]  A. Foster,et al.  Biphenylene network: A nonbenzenoid carbon allotrope , 2021, Science.

[6]  R. Ansari,et al.  A molecular dynamics study on the buckling behavior of x-graphyne based single- and multi-walled nanotubes , 2021 .

[7]  Shaohua Chen,et al.  Temperature-dependent brittle-ductile transition of α-graphyne nanotubes under uniaxial tension , 2021 .

[8]  V. Meunier,et al.  Tripentaphenes: two-dimensional acepentalene-based nanocarbon allotropes. , 2020, Physical chemistry chemical physics : PCCP.

[9]  S. Rouhi,et al.  Molecular dynamics investigation of the mechanical properties of two different graphyne allotropes: α-graphyne and α2-graphyne , 2020 .

[10]  S. R. Bakshi,et al.  Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review , 2020 .

[11]  A. Reisi-Vanani,et al.  DFT study of the electronic and structural properties of single Al and N atoms and Al-N co-doped graphyne toward hydrogen storage , 2019, Applied Surface Science.

[12]  P. Briddon,et al.  Stacking- and chirality-dependent collapse of single-walled carbon nanotubes: A large-scale density-functional study , 2019, Physical Review B.

[13]  Ju Hyeon Kim,et al.  Stacked double-walled carbon nanotube sheet electrodes for electrochemically harvesting thermal energy , 2019, Carbon.

[14]  D. Galvão,et al.  Elastic properties of graphyne-based nanotubes , 2019, Computational Materials Science.

[15]  Yuan Yuan,et al.  Chiral γ-graphyne nanotubes with almost equivalent bandgaps. , 2019, The Journal of chemical physics.

[16]  Zhongfan Liu,et al.  Template Synthesis of an Ultrathin β-Graphdiyne-Like Film Using the Eglinton Coupling Reaction. , 2019, ACS applied materials & interfaces.

[17]  Jun Kang,et al.  Graphyne and Its Family: Recent Theoretical Advances. , 2019, ACS applied materials & interfaces.

[18]  A. Ramazani,et al.  Graphyne Nanotubes: Materials with Ultralow Phonon Mean Free Path and Strong Optical Phonon Scattering for Thermoelectric Applications , 2018, The Journal of Physical Chemistry C.

[19]  Chaofan Yang,et al.  Synthesis of γ-graphyne by mechanochemistry and its electronic structure , 2018, Carbon.

[20]  C. Yam,et al.  Nanomechanical control of spin current flip using monovacancy graphene , 2018, Carbon.

[21]  E. Wang,et al.  Interfacial engineering in graphene bandgap. , 2018, Chemical Society reviews.

[22]  A. Ajayaghosh,et al.  Hybrid materials of 1D and 2D carbon allotropes and synthetic π-systems , 2018, NPG Asia Materials.

[23]  Jeongnim Kim,et al.  Nature of Interlayer Binding and Stacking of sp-sp2 Hybridized Carbon Layers: A Quantum Monte Carlo Study. , 2017, Journal of chemical theory and computation.

[24]  Hong-Xing Zhang,et al.  Novel Carbon Nanotubes Rolled from 6,6,12-Graphyne: Double Dirac Points in 1D Material , 2017 .

[25]  Bowen Wang,et al.  Perfect Spin Filter in a Tailored Zigzag Graphene Nanoribbon , 2017, Nanoscale Research Letters.

[26]  K. Nagashio,et al.  Crystalline Graphdiyne Nanosheets Produced at a Gas/Liquid or Liquid/Liquid Interface. , 2017, Journal of the American Chemical Society.

[27]  M. Hasegawa,et al.  Collapsed armchair single-walled carbon nanotubes as an analog of closed-edged bilayer graphene nanoribbons , 2015 .

[28]  D. Galvão,et al.  Torsional 'Superplasticity' of Graphyne Nanotubes , 2015, 1509.08746.

[29]  J. Lee,et al.  Size dependent electronic band structures of β- and γ-graphyne nanotubes , 2015 .

[30]  A. Oganov,et al.  Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones. , 2015, Nano letters.

[31]  T. Ando,et al.  Effective-mass theory of collapsed carbon nanotubes , 2015, 1504.01540.

[32]  J. Lee,et al.  Electronic properties of α-graphyne nanotubes , 2015 .

[33]  A. Singh,et al.  pentahexoctite: A new two-dimensional allotrope of carbon , 2014, Scientific Reports.

[34]  H. Jiang,et al.  Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse. , 2014, ACS nano.

[35]  Thomas Dienel,et al.  Controlled synthesis of single-chirality carbon nanotubes , 2014, Nature.

[36]  F. Peeters,et al.  Tunable double Dirac cone spectrum in bilayer α-graphyne , 2013 .

[37]  J. Warner,et al.  Fabrication and Characterization of Fully Flattened Carbon Nanotubes: A New Graphene Nanoribbon Analogue , 2013, Scientific Reports.

[38]  Jie Yao,et al.  Electric field induced orientation-selective unzipping of zigzag carbon nanotubes upon oxidation. , 2013, Physical chemistry chemical physics : PCCP.

[39]  Yingyan Zhang,et al.  Mechanical properties of graphynes under tension: A molecular dynamics study , 2012 .

[40]  Francesc Viñes,et al.  Competition for graphene: graphynes with direction-dependent Dirac cones. , 2012, Physical review letters.

[41]  Zhigang Shuai,et al.  Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. , 2011, ACS nano.

[42]  Brandon W. Whitman,et al.  Electronic properties of the biphenylene sheet and its one-dimensional derivatives. , 2010, ACS nano.

[43]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[44]  Daoben Zhu,et al.  Architecture of graphdiyne nanoscale films. , 2010, Chemical communications.

[45]  M. Hasegawa,et al.  Electronic Structure of a Collapsed Armchair Single-Walled Carbon Nanotube , 2009 .

[46]  L. M. Woods,et al.  Electronic Structure Modulations of Radially Deformed Single Wall Carbon Nanotubes under Transverse External Electric Fields , 2009 .

[47]  A. V. Fedorov,et al.  Substrate-induced bandgap opening in epitaxial graphene. , 2007, Nature materials.

[48]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[49]  M. Hasegawa,et al.  Radial deformation and stability of single-wall carbon nanotubes under hydrostatic pressure , 2006 .

[50]  H. Mehrez,et al.  Analysis of band-gap formation in squashed armchair carbon nanotubes , 2005, physics/0503100.

[51]  S. Louie,et al.  Hydrostatic pressure effects on the structural and electronic properties of carbon nanotubes , 2004, cond-mat/0409241.

[52]  R. Baughman,et al.  Families of carbon nanotubes: Graphyne-based nanotubes , 2003 .

[53]  B. Gu,et al.  Metal-to-semiconductor transition in squashed armchair carbon nanotubes. , 2003, Physical review letters.

[54]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0104182.

[55]  Hernandez,et al.  New metallic allotropes of planar and tubular carbon , 2000, Physical review letters.

[56]  A. M. Rao,et al.  Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure , 1999 .

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[58]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[59]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[60]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[61]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[62]  P. Gamallo,et al.  First-principles study of structural, elastic and electronic properties of α-, β- and γ-graphyne , 2016 .

[63]  M. Peters,et al.  Structural phase transition in carbon nanotube bundles under pressure , 2000 .