The Collisional Evolution of the Main Asteroid Belt

The main asteroid belt is a living relic. It contains a record of what happened to the solar system in terms of bombardment since the planet-formation epoch. Ongoing collisional and dynamical evolution processes, however, are slowly obscuring the traces left behind. The goal of modeling efforts is to use all possible observational data to discern the initial conditions and evolution processes that occurred during and after the planet-formation epoch. For example, the questions one can probe with main-belt constraints include the nature and mass of planetesimals inside Jupiter’s orbit, the timing of Jupiter’s formation, the distribution of volatiles in the inner solar system, the size distribution produced during planetary accretion, the presence of planetary embryos inside Jupiter’s orbit, the migration of the giant planets and whether sweeping resonance ever crossed the main belt, the degree of material mixing that occurred between the feeding zones, etc. The problem is that our uncertainties about planet-formation processes and giant planet migration feed back into the assumptions made for our collisional-evolution models of the asteroid belt. If we do not know what happened when, it

[1]  Harold F. Levison,et al.  Can planetesimals left over from terrestrial planet formation produce the lunar Late Heavy Bombardment , 2007 .

[2]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[3]  Robert Jedicke,et al.  Observational Selection Effects in Asteroid Surveys , 2002 .

[4]  G. Ryder,et al.  Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System , 2001 .

[5]  R. Jaumann,et al.  Vesta’s Shape and Morphology , 2012, Science.

[6]  A. Fienga,et al.  Determination of asteroid masses from their close encounters with Mars , 2010 .

[7]  G. Collins,et al.  The early impact histories of meteorite parent bodies , 2013, 1307.7549.

[8]  Alessandro Morbidelli,et al.  The Flora Family: A Case of the Dynamically Dispersed Collisional Swarm? , 2002 .

[9]  Harold F. Levison,et al.  Asteroids Were Born Big , 2009, 0907.2512.

[10]  P. Farinella,et al.  Wavy size distributions for collisional systems with a small-size cutoff , 1994 .

[11]  A. Morbidelli,et al.  STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS , 2012, 1208.2957.

[12]  Robert Jedicke,et al.  Collisional Models and Scaling Laws: A New Interpretation of the Shape of the Main-Belt Asteroid Size Distribution☆ , 1998 .

[13]  Clark R. Chapman,et al.  Ages of large lunar impact craters and implications for bombardment during the Moon’s middle age , 2013 .

[14]  R. Malhotra,et al.  SECULAR RESONANCE SWEEPING OF THE MAIN ASTEROID BELT DURING PLANET MIGRATION , 2011, 1102.3131.

[15]  Richard P. Binzel,et al.  Spin vectors in the Koronis family: comprehensive results from two independent analyses of 213 rotation lightcurves , 2003 .

[16]  A. Cellino,et al.  Yarkovsky depletion and asteroid collisional evolution , 2004 .

[17]  E. Scott,et al.  Dating the Moon-forming impact event with asteroidal meteorites , 2015, Science.

[18]  Robert Jedicke,et al.  Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion , 2005 .

[19]  David Vokrouhlický,et al.  The vector alignments of asteroid spins by thermal torques , 2003, Nature.

[20]  R. Greenberg,et al.  Steady-State Size Distributions for Collisional Populations: Analytical Solution with Size-Dependent Strength , 2003, 1407.3307.

[21]  A. Vagnozzi,et al.  Asteroids’ physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution , 2013 .

[22]  G. Cremonese,et al.  A NEW CHRONOLOGY FOR THE MOON AND MERCURY , 2008, 0903.5137.

[23]  Kevin R. Housen,et al.  Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles , 2009 .

[24]  D. Britt,et al.  Asteroid Density, Porosity, and Structure , 2002 .

[25]  O. Eugster Cosmic-ray Exposure Ages of Meteorites and Lunar Rocks and Their Significance , 2003 .

[26]  R. Jaumann,et al.  The Violent Collisional History of Asteroid 4 Vesta , 2012, Science.

[27]  A. Coradini,et al.  Probing the history of Solar system through the cratering records on Vesta and Ceres , 2011 .

[28]  S. Slivan,et al.  Spin vectors in the Koronis family: III. (832) Karin , 2012 .

[29]  S. Slivan,et al.  Spin vector alignment of Koronis family asteroids , 2002, Nature.

[30]  Origin of asteroid rotation rates in catastrophic impacts , 1997, Nature.

[31]  W. Hartmann,et al.  The Comparison of Size-Frequency Distributions of Impact Craters and Asteroids and the Planetary Cratering Rate , 2002 .

[32]  M. Kaasalainen,et al.  Spin vectors in the Koronis family: II. Additional clustered spins, and one stray , 2009 .

[33]  D. Davis,et al.  Collisional history of asteroids: Evidence from Vesta and the Hirayama families , 1985 .

[34]  B. Wood,et al.  Late Accretion on the Earliest Planetesimals Revealed by the Highly Siderophile Elements , 2012, Science.

[35]  Newell J. Trask,et al.  The Geologic History of the Moon , 2020 .

[36]  S. Stewart,et al.  Full numerical simulations of catastrophic small body collisions , 2008, 0811.0175.

[37]  D. Garrison,et al.  Probable age of Autolycus and calibration of lunar stratigraphy , 1991 .

[38]  Z. Ivezic,et al.  Solar system objects observed in the Sloan Digital Sky Survey commissioning data , 2001 .

[39]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[40]  H. Cibulkov'a,et al.  A six-part collisional model of the main asteroid belt , 2014, 1407.6143.

[41]  S. Dermott,et al.  The Collisional Evolution of the Asteroid Belt and Its Contribution to the Zodiacal Cloud , 1997 .

[42]  William M. Folkner,et al.  A new approach to determining asteroid masses from planetary range measurements , 2013 .

[43]  W. Bottke,et al.  Detection of the Yarkovsky effect for main-belt asteroids , 2004 .

[44]  R. Jedicke,et al.  The origin and evolution of stony meteorites , 2004, Proceedings of the International Astronomical Union.

[45]  Stuart J. Robbins,et al.  New crater calibrations for the lunar crater-age chronology , 2014 .

[46]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[47]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[48]  Robert Jedicke,et al.  On the asteroid belt's orbital and size distribution , 2009 .

[49]  W. Bottke,et al.  A sawtooth-like timeline for the first billion years of lunar bombardment , 2012, 1208.4624.

[50]  T. B. Spahr,et al.  MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS , 2011, 1109.4096.

[51]  E. Opik,et al.  COLLISION PROBABILITIES WITH THE PLANETS AND THE DISTRIBUTION OF INTERPLANETARY MATTER , 2016 .

[52]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[53]  W. Hartmann,et al.  Asteroid collisions and evolution of asteroidal mass distribution and meteoritic flux , 1968 .

[54]  J. Chambers,et al.  Planets in the asteroid belt , 2001 .

[55]  Main Belt Asteroid Collision Probabilities and Impact Velocities , 1998 .

[56]  Harold F. Levison,et al.  An Archaean heavy bombardment from a destabilized extension of the asteroid belt , 2012, Nature.

[57]  John E. Chambers,et al.  Primordial Excitation and Depletion of the Main Belt , 2002 .

[58]  R. C. Domingos,et al.  Chaotic diffusion caused by close encounters with several massive asteroids - II. The regions of (10) Hygiea, (2) Pallas, and (31) Euphrosyne , 2013 .

[59]  Harold F. Levison,et al.  IRREGULAR SATELLITE CAPTURE BY EXCHANGE REACTIONS , 2008 .

[60]  H. R. Aggarwal,et al.  Size-frequency distributions of primary and secondary lunar impact craters , 1978 .

[61]  R. Malhotra,et al.  A record of planet migration in the main asteroid belt , 2009, Nature.

[62]  P. Farinella,et al.  How Many Rubble Piles Are in the Asteroid Belt , 2001 .

[63]  Sarah T. Stewart,et al.  COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS , 2011, 1106.6084.

[64]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[65]  E. Ryan,et al.  Asteroid Impacts: Laboratory Experiments and Scaling Laws , 2002 .

[66]  M. Nolan,et al.  Velocity Distributions among Colliding Asteroids , 1994 .

[67]  Zeljko Ivezic,et al.  The Size Distributions of Asteroid Families in the SDSS Moving Object Catalog 4 , 2008, 0807.3762.

[68]  Y. Krugly,et al.  TANGENTIAL COMPONENT OF THE YORP EFFECT , 2012, 1408.1953.

[69]  The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects , 2012, 1203.1464.

[70]  Clark R. Chapman,et al.  Could the Lunar “Late Heavy Bombardment” Have Been Triggered by the Formation of Uranus and Neptune? , 2001 .

[71]  D. O'Brien The Yarkovsky effect is not responsible for small crater depletion on Eros and Itokawa , 2009 .

[72]  A. Cellino,et al.  Recent collisional jet from a primitive asteroid , 2012, 1206.1962.

[73]  E. Asphaug Impact origin of the Vesta family , 1997 .

[74]  E. Anders Fragmentation history of asteroids , 1965 .

[75]  A. Morbidelli,et al.  Constraining the cometary flux through the asteroid belt during the late heavy bombardment , 2013, 1301.6221.

[76]  Derek C. Richardson,et al.  The formation of asteroid satellites in large impacts: Results from numerical simulations , 2004 .

[77]  R. Greenberg,et al.  The collisional and dynamical evolution of the main-belt and NEA size distributions , 2005 .

[78]  C. Chapman,et al.  Determining the Main Belt Size Distribution Using Asteroid Crater Records and Crater Saturation Models , 2006 .

[79]  Alessandro Morbidelli,et al.  Orbital and temporal distributions of meteorites originating in the asteroid belt , 1998 .

[80]  B. Gladman,et al.  Fugitives from the Vesta family , 2008 .

[81]  Statistical Properties of Encounters among Asteroids: A New, General Purpose, Formalism , 1998 .

[82]  A. McEwen,et al.  The Phanerozoic Impact Cratering Rate: Evidence from the Farside of the Moon , 1997 .

[83]  D. Scheeres,et al.  A THREE-DIMENSIONAL MODEL OF TANGENTIAL YORP , 2014 .

[84]  P. Tanga,et al.  COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT , 2014, 1411.1114.

[85]  P. Farinella,et al.  Collision rates and impact velocities in the Main Asteroid Belt , 1992 .

[86]  R. Gil-Hutton,et al.  Collisional evolution of small body populations , 2002 .

[87]  D. Rabinowitz,et al.  A reduced estimate of the number of kilometre-sized near-Earth asteroids , 2000, Nature.

[88]  ASTEROID COLLISIONAL EVOLUTION - AN INTEGRATED MODEL FOR THE EVOLUTION OF ASTEROID ROTATION RATES , 1992 .

[89]  Richard P. Binzel,et al.  Asteroid collisional history - Effects on sizes and spins , 1989 .

[90]  C. Russell,et al.  High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites , 2013 .

[91]  D. Vokrouhlický,et al.  In search of the source of asteroid (101955) Bennu: Applications of the stochastic YORP model , 2015 .

[92]  R. Malhotra,et al.  Dynamical erosion of the asteroid belt and implications for large impacts in the inner Solar System , 2009, 0909.3875.

[93]  Mark S. Robinson,et al.  How old are young lunar craters , 2012 .

[94]  Harold F. Levison,et al.  EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER's ORBIT , 2010, 1009.1521.

[95]  Harold F. Levison,et al.  Recent Origin of the Solar System Dust Bands , 2003 .

[96]  Daniel D. Durda,et al.  Asteroids Do Have Satellites , 2002 .

[97]  M. Pedani,et al.  Discovery of a young asteroid cluster associated with P/2012 F5 (Gibbs) , 2014, 1401.2966.

[98]  S. Weidenschilling The distribution of mass in the planetary system and solar nebula , 1977 .

[99]  C. J. van Houten,et al.  Survey of Asteroids. , 1958 .

[100]  A. Coradini,et al.  JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT , 2012, 1202.4887.

[101]  G. W. Wetherill,et al.  Collisions in the asteroid belt , 1967 .

[102]  F. Marzari,et al.  Combined effect of YORP and collisions on the rotation rate of small Main Belt asteroids , 2011 .

[103]  K. Keil,et al.  Meteoritic parent bodies: Their number and identification , 2002 .

[104]  E. V. Pitjeva,et al.  Hidden Mass in the Asteroid Belt , 2002 .

[105]  D. Williams,et al.  Size Distribution of Collisionally Evolved Asteroidal Populations: Analytical Solution for Self-Similar Collision Cascades , 1994 .

[106]  Joseph A. Burns,et al.  Orbital evolution of the Gefion and Adeona asteroid families: close encounters with massive asteroids and the Yarkovsky effect , 2003 .

[107]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[108]  Derek C. Richardson,et al.  Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families , 2007 .

[109]  Harold F. Levison,et al.  Constructing the secular architecture of the solar system II: The terrestrial planets , 2009, 0909.1891.

[110]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[111]  D. Davis,et al.  Effect of rotational disruption on the size–frequency distribution of the Main Belt asteroid population , 2014, 1401.1813.

[112]  R. Jaumann,et al.  Large‐scale troughs on Vesta: A signature of planetary tectonics , 2012 .

[113]  Alessandro Morbidelli,et al.  The Yarkovsky-driven origin of near-Earth asteroids , 2003 .

[114]  Alan W. Harris,et al.  Collisional evolution of asteroids - Populations, rotations, and velocities , 1979 .

[115]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[116]  P. Farinella,et al.  Modelling the outcomes of high-velocity impacts between small solar system bodies , 1993 .

[117]  Derek C. Richardson,et al.  A comparison between rubble-pile and monolithic targets in impact simulations: Application to asteroid satellites and family size distributions , 2012 .

[118]  T. Statler,et al.  Extreme sensitivity of the YORP effect to small-scale topography , 2009, 0903.1119.

[119]  Satoshi Inaba,et al.  Steady-State Size Distribution for the Self-Similar Collision Cascade , 1996 .

[120]  Alessandro Morbidelli,et al.  Iron meteorites as remnants of planetesimals formed in the terrestrial planet region , 2006, Nature.

[121]  W. Benz,et al.  The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions , 2013, Nature.

[122]  W. Bottke,et al.  The primordial excitation and clearing of the asteroid belt—Revisited , 2006 .

[123]  P. Michel,et al.  ROTATION-DEPENDENT CATASTROPHIC DISRUPTION OF GRAVITATIONAL AGGREGATES , 2014, 1406.5228.

[124]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[125]  David J. Williams,et al.  The Geologically Recent Giant Impact Basins at Vesta’s South Pole , 2012, Science.

[126]  Tucson,et al.  Small crater populations on Vesta , 2013, 1305.6679.