Hexagonal dielectric loaded nantenna for optical ITU-T C-band communication

Antennas designed with nano scale technologies, at optical frequencies, will be a corner stone in next generation nano communication links and networks. These optical antennas, operating in the THz regime of electromagnetic spectrum, will be applicable to fields including biomedical, environmental, military, and civilian communications. In this paper, authors propose and explore the potential benefits of designing a hexagonal dielectric loaded nantenna (HDLN) at a center frequency of 193.5 THz using CST Microwave Studio. The nantenna consists of Silver `Ag' as partial ground plane, a top and bottom `SiO2' substrate and a `Si' hexagon as dielectric fed by a `Ag' nanostrip transmission line. The simulated nantenna achieves a wide impedance bandwidth of 3.7% from 190.9 THz to 198.1 THz and an end-fire directivity of 8 dBi, covering all the standard optical transmission window at the ITU-T optical communication 1550 nm C-band.

[1]  Stuart A. Long,et al.  Rectangular dielectric resonator antenna , 1983 .

[2]  P. Guillon,et al.  Dielectric resonators , 1988, Proceedings of the 42nd Annual Frequency Control Symposium, 1988..

[3]  Jacob Scheuer,et al.  Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. , 2014, Nano letters.

[4]  A. Ittipiboon,et al.  A half-split cylindrical dielectric resonator antenna using slot-coupling , 1993, IEEE Microwave and Guided Wave Letters.

[5]  Yuri S. Kivshar,et al.  Optical Yagi-Uda nanoantennas , 2012, 1204.0330.

[6]  Ezzeldin A. Soliman,et al.  Circularly polarized nanoring antenna for uniform overheating applications , 2012 .

[7]  Hongyu Zhou,et al.  Nanoscale Optical Dielectric Rod Antenna for On-Chip Interconnecting Networks , 2011, IEEE Transactions on Microwave Theory and Techniques.

[8]  Guy A. E. Vandenbosch,et al.  Engineering the Input Impedance of Optical Nano Dipole Antennas: Materials, Geometry and Excitation Effect , 2011, IEEE Transactions on Antennas and Propagation.

[9]  C. Waltermann,et al.  Bow-tie nano-antenna assisted generation of extreme ultraviolet radiation , 2013 .

[10]  L. Novotný,et al.  Antennas for light , 2011 .

[11]  Nigel P. Johnson,et al.  Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators , 2011 .

[12]  A.A. Kishk,et al.  Analysis of dielectric-resonator antennas with emphasis on hemispherical structures , 1994, IEEE Antennas and Propagation Magazine.

[13]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[14]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[15]  Prakash Bhartia,et al.  Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth , 1994 .

[16]  W. Sha,et al.  Tuning optical responses of metallic dipole nanoantenna using graphene. , 2013, Optics express.

[17]  P. Biagioni,et al.  Nanoantennas for visible and infrared radiation , 2011, Reports on progress in physics. Physical Society.

[18]  K. T. Mathew,et al.  Hexagonal dielectric resonator antenna for 2.4 GHz WLAN applications , 2007 .

[19]  Nader Engheta,et al.  Theory, Modeling and Features of Optical Nanoantennas , 2013, IEEE Transactions on Antennas and Propagation.

[20]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[21]  H. Ng,et al.  Dielectric Resonator Antennas , 2005 .

[22]  Yahia M. M. Antar,et al.  Recent advances in dielectric-resonator antenna technology , 1998 .

[23]  Zheng Li,et al.  On-Chip Wireless Optical Broadcast Interconnection Network , 2010, Journal of Lightwave Technology.

[24]  D. Kajfex,et al.  Dielectric Resonators , 1986 .