Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10−5 − 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

[1]  S. Hughes,et al.  Improved binary pulsar constraints on the parametrized post-Einsteinian framework , 2010, Physical Review D.

[2]  P. Jetzer,et al.  Erratum: Effective-one-body Hamiltonian with next-to-leading order spin-spin coupling for two nonprecessing black holes with aligned spins [Phys. Rev. D 87, 124036 (2013)] , 2014 .

[3]  Takahiro Tanaka,et al.  Erratum: Slowly rotating black holes in dynamical Chern-Simons gravity: Deformation quadratic in the spin [Phys. Rev. D 86, 044037 (2012)] , 2014 .

[4]  Massimo Tinto,et al.  Time-Delay Interferometry , 2003, Living reviews in relativity.

[5]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[6]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[7]  J. Gair,et al.  Extreme-mass-ratio-bursts from extragalactic sources , 2013, 1306.0774.

[8]  P. Jetzer,et al.  Effective-one-body Hamiltonian with next-to-leading order spin-spin coupling for two nonprecessing black holes with aligned spins , 2013 .

[9]  C. Deffayet,et al.  An introduction to the Vainshtein mechanism , 2013, 1304.7240.

[10]  X. Siemens,et al.  Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays , 2013, Living reviews in relativity.

[11]  E. Berti,et al.  Numerical simulations of single and binary black holes in scalar-tensor theories: Circumventing the no-hair theorem , 2013, 1304.2836.

[12]  E. Berti Astrophysical Black Holes as Natural Laboratories for Fundamental Physics and Strong-Field Gravity , 2013, 1302.5702.

[13]  V. Cardoso,et al.  INTO THE LAIR: GRAVITATIONAL-WAVE SIGNATURES OF DARK MATTER , 2013, 1302.2646.

[14]  K. Yagi,et al.  SCIENTIFIC POTENTIAL OF DECIGO PATHFINDER AND TESTING GR WITH SPACE-BORNE GRAVITATIONAL WAVE INTERFEROMETERS , 2013, 1302.2388.

[15]  A. Pai,et al.  TESTS OF GENERAL RELATIVITY AND ALTERNATIVE THEORIES OF GRAVITY USING GRAVITATIONAL WAVE OBSERVATIONS , 2013, 1302.2198.

[16]  M. Vallisneri,et al.  Stealth bias in gravitational-wave parameter estimation , 2013, 1301.2627.

[17]  V. Cardoso,et al.  Superradiant instabilities in astrophysical systems , 2012, 1212.0551.

[18]  J. Gair,et al.  Observing the Galaxy's massive black hole with gravitational wave bursts , 2012, 1210.2778.

[19]  K. Hayama,et al.  Model-independent test of gravity with a network of ground-based gravitational-wave detectors , 2012, 1208.4596.

[20]  E. Berti,et al.  Numerical simulations of black-hole binaries and gravitational wave emission , 2011, 1107.2819.

[21]  Malcolm MacCallum Exact solutions of Einstein's equations , 2013, Scholarpedia.

[22]  Experimental Tests of General Relativity , 2013 .

[23]  Thibault Damour,et al.  Improved effective-one-body description of coalescing nonspinning black-hole binaries and its numerical-relativity completion , 2012, 1212.4357.

[24]  S. Babak,et al.  Extreme mass ratio inspiral data analysis with a phenomenological waveform , 2012 .

[25]  J. Gair,et al.  Observing extreme-mass-ratio inspirals with eLISA/NGO , 2012, 1210.8066.

[26]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[27]  Kei Yamada,et al.  Possible daily and seasonal variations in quantum interference induced by Chern-Simons gravity. , 2012, Physical review letters.

[28]  Takahiro Tanaka,et al.  Gravitational waves from quasicircular black-hole binaries in dynamical Chern-Simons gravity. , 2012, Physical review letters.

[29]  Warren R. Brown,et al.  RAPID ORBITAL DECAY IN THE 12.75-MINUTE BINARY WHITE DWARF J0651+2844 , 2012, 1208.5051.

[30]  M. Kamionkowski,et al.  Vacuum Instability in Chern-Simons Gravity , 2012, 1208.4871.

[31]  M. Vallisneri Testing general relativity with gravitational waves: a reality check , 2012, 1207.4759.

[32]  A. Pai,et al.  Singular value decomposition in parametrized tests of post-Newtonian theory , 2012, 1207.1943.

[33]  Takahiro Tanaka,et al.  Slowly Rotating Black Holes in Dynamical Chern-Simons Gravity: Deformation Quadratic in the Spin , 2012, 1206.6130.

[34]  Cambridge,et al.  Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries , 2012, 1206.0322.

[35]  P. Amaro-Seoane Stellar dynamics and extreme-mass ratio inspirals , 2012 .

[36]  P. Freire,et al.  The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity , 2012, 1205.1450.

[37]  Cambridge,et al.  Testing Chern-Simons Modified Gravity with Gravitational-Wave Detections of Extreme-Mass-Ratio Binaries , 2012, 1205.1253.

[38]  K. Yagi,et al.  New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary , 2012, 1204.4524.

[39]  J. Alsing,et al.  Light scalar field constraints from gravitational-wave observations of compact binaries , 2012, 1204.4340.

[40]  Takahiro Tanaka,et al.  Gravitational-wave standard siren without redshift identification , 2012, 1204.2877.

[41]  K. Chatziioannou,et al.  Model-Independent Test of General Relativity: An Extended post-Einsteinian Framework with Complete Polarization Content , 2012, 1204.2585.

[42]  H. Kodama,et al.  Bosenova Collapse of Axion Cloud around a Rotating Black Hole , 2012, 1203.5070.

[43]  Takahiro Tanaka,et al.  Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity , 2012 .

[44]  K. Arun Generic bounds on dipolar gravitational radiation from inspiralling compact binaries , 2012, 1202.5911.

[45]  J. Magueijo,et al.  Case for testing modified Newtonian dynamics using LISA pathfinder , 2012 .

[46]  K. Yagi,et al.  Gravitational wave observations of galactic intermediate-mass black hole binaries with DECIGO path finder , 2012, 1202.3512.

[47]  A. Błaut Angular and frequency response of the gravitational wave interferometers in the metric theories of gravity , 2012, 1901.11268.

[48]  Bernard F. Schutz,et al.  Low-frequency gravitational-wave science with eLISA/NGO , 2012, 1202.0839.

[49]  Michael Boyle,et al.  Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms , 2012, 1202.0790.

[50]  J. Thorpe,et al.  Comparison of atom interferometers and light interferometers as space-based gravitational wave detectors. , 2012, Physical review letters.

[51]  A. Pound Second-order gravitational self-force. , 2012, Physical review letters.

[52]  G. Nelemans,et al.  GRAVITATIONAL-WAVE EMISSION FROM COMPACT GALACTIC BINARIES , 2012, 1201.4613.

[53]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[54]  Alejandro Boh'e,et al.  Cosmological backgrounds of gravitational waves and eLISA/NGO: phase transitions, cosmic strings and other sources , 2012, 1201.0983.

[55]  P. Diener,et al.  Self-consistent orbital evolution of a particle around a Schwarzschild black hole. , 2011, Physical review letters.

[56]  D. Shoemaker,et al.  Late inspiral and merger of binary black holes in scalar–tensor theories of gravity , 2011, 1112.3928.

[57]  V. Cardoso,et al.  Gravitational waves from quasicircular extreme mass-ratio inspirals as probes of scalar-tensor theories , 2011, 1112.3351.

[58]  J. Gair,et al.  Evolution of inspiral orbits around a Schwarzschild black hole , 2011, 1111.6908.

[59]  X. Siemens,et al.  Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays , 2011, 1111.5661.

[60]  S. Gossan,et al.  Bayesian model selection for testing the no-hair theorem with black hole ringdowns , 2011, 1111.5819.

[61]  C. Burgess,et al.  Cosmic black-hole hair growth and quasar OJ287 , 2011, 1111.4009.

[62]  Teruaki Suyama,et al.  Black hole perturbation in nondynamical and dynamical Chern-Simons gravity , 2011, 1110.6241.

[63]  S. Mirshekari,et al.  Constraining Lorentz-violating, modified dispersion relations with gravitational waves , 2011, 1110.2720.

[64]  C. Broeck,et al.  Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations , 2011, 1111.5274.

[65]  T. Sotiriou,et al.  Black holes in scalar-tensor gravity. , 2011, Physical review letters.

[66]  P. Jetzer,et al.  Testing general relativity with LISA including spin precession and higher harmonics in the waveform , 2011, 1108.1826.

[67]  H. Kodama,et al.  Axiverse and Black Hole , 2011, 1108.1365.

[68]  S. Husa,et al.  Black-hole hair loss: learning about binary progenitors from ringdown signals , 2011, 1107.0854.

[69]  T. Hinderer,et al.  Transient resonances in the inspirals of point particles into black holes. , 2010, Physical review letters.

[70]  A. Sesana,et al.  Origin and Implications of high eccentricities in massive black hole binaries at sub-pc scales , 2011, 1111.3742.

[71]  Yanbei Chen,et al.  Slowly-rotating stars and black holes in dynamical Chern-Simons gravity , 2011, 1110.5329.

[72]  K. Nakayama,et al.  Prospects for determination of thermal history after inflation with future gravitational wave detectors , 2011, 1110.4169.

[73]  E. Berti,et al.  Floating and sinking: the imprint of massive scalars around rotating black holes. , 2011, Physical review letters.

[74]  V. Cardoso,et al.  Slowly rotating black holes in alternative theories of gravity , 2011, 1109.3996.

[75]  P. Armitage,et al.  THE BUTTERFLY EFFECT IN THE EXTREME-MASS RATIO INSPIRAL PROBLEM , 2011, 1108.5174.

[76]  J. Yokoyama,et al.  Erratum: Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance [Phys. Rev. Lett.102, 161101 (2009)] , 2011 .

[77]  J. Gair,et al.  Graviton mass bounds from space-based gravitational-wave observations of massive black hole populations , 2011, 1107.3528.

[78]  A. Buonanno,et al.  Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings , 2011, 1107.2904.

[79]  J. Gair,et al.  Approximate Waveforms for Extreme-Mass-Ratio Inspirals in Modified Gravity Spacetimes , 2011, 1106.6313.

[80]  T. Littenberg A Detection Pipeline for Galactic Binaries in LISA Data , 2011, 1106.6355.

[81]  Yacine Ali-Haïmoud Revisiting the double-binary-pulsar probe of nondynamical Chern-Simons gravity , 2011 .

[82]  Michael Boyle,et al.  Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism , 2011, 1106.1021.

[83]  Badr N. Alsuwaidan,et al.  Gravity Probe B: final results of a space experiment to test general relativity. , 2011, Physical review letters.

[84]  N. Cornish,et al.  Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework , 2011, 1105.2088.

[85]  S. McWilliams,et al.  Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries , 2011, 1104.5650.

[86]  A. Loeb,et al.  Observable signatures of extreme mass-ratio inspiral black hole binaries embedded in thin accretion disks , 2011, 1104.2322.

[87]  V. Cardoso,et al.  Gravitational waves from extreme mass-ratio inspirals in dynamical Chern-Simons gravity , 2011, 1104.1183.

[88]  J. Gair,et al.  Linearized f ( R ) gravity: Gravitational radiation and Solar System tests , 2011, 1104.0819.

[89]  Z. Haiman,et al.  Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals. , 2011, Physical review letters.

[90]  Umberto Cannella Effective Field Theory Methods in Gravitational Physics and Tests of Gravity , 2011, 1103.0983.

[91]  N. Warburton,et al.  Self force on a scalar charge in Kerr spacetime: eccentric equatorial orbits , 2011, 1103.0287.

[92]  Massimo Tinto,et al.  Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity , 2011, 1102.4824.

[93]  C. Will,et al.  Stellar Dynamics of Extreme-Mass-Ratio Inspirals , 2011, 1102.3180.

[94]  Antoine Petiteau,et al.  CONSTRAINING THE DARK ENERGY EQUATION OF STATE USING LISA OBSERVATIONS OF SPINNING MASSIVE BLACK HOLE BINARIES , 2011, 1102.0769.

[95]  N. Yunes,et al.  Bumpy black holes in alternative theories of gravity , 2011, 1102.3706.

[96]  Takahiro Tanaka,et al.  Probing the size of extra dimensions with gravitational wave astronomy , 2011, 1101.4997.

[97]  N. Yunes,et al.  Nonspinning black holes in alternative theories of gravity , 2011, 1101.2921.

[98]  W. D. Pozzo,et al.  Testing General Relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems , 2011, 1101.1391.

[99]  N. Yunes,et al.  Effective gravitational wave stress-energy tensor in alternative theories of gravity , 2010, 1012.3144.

[100]  Jonathan R. Gair,et al.  Reconstructing the massive black hole cosmic history through gravitational waves , 2010, 1011.5893.

[101]  A. Nishizawa,et al.  Tracing the redshift evolution of Hubble parameter with gravitational-wave standard sirens , 2010, 1011.5000.

[102]  J. Gair,et al.  Intermediate-mass-ratio-inspirals in the Einstein Telescope. II. Parameter estimation errors. , 2010, 1011.0421.

[103]  M. Miller,et al.  Effect of massive perturbers on extreme mass-ratio inspiral waveforms , 2010, 1010.1721.

[104]  Jean-Philippe Uzan,et al.  Varying Constants, Gravitation and Cosmology , 2010, Living reviews in relativity.

[105]  A. Arvanitaki,et al.  Exploring the String Axiverse with Precision Black Hole Physics , 2010, 1004.3558.

[106]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[107]  E. Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.

[108]  R. Hellings,et al.  Constraining the black hole mass spectrum with gravitational wave observations II. Direct comparison of detailed models , 2011 .

[109]  Robert Eliot Spero,et al.  LAGRANGE: A Space-Based Gravitational-Wave Detector with Geometric Suppression of Spacecraft Noise , 2011 .

[110]  S. Merkowitz Tests of Gravity Using Lunar Laser Ranging , 2010, Living reviews in relativity.

[111]  P. Amaro-Seoane,et al.  The impact of realistic models of mass segregation on the event rate of extreme-mass ratio inspirals and cusp re-growth , 2010, 1010.5781.

[112]  Joan M. Centrella,et al.  Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.

[113]  Massimo Tinto,et al.  LISA Sensitivities to Gravitational Waves from Relativistic Metric Theories of Gravity , 2010, 1010.1302.

[114]  J. Gair,et al.  Constraining properties of the black hole population using LISA , 2010, 1009.6172.

[115]  J. Gair,et al.  Intermediate-mass-ratio-inspirals in the Einstein Telescope: I. Signal-to-noise ratio calculations , 2010, 1009.1985.

[116]  R. Hellings,et al.  Constraining the Black Hole Mass Spectrum with LISA Observations II: Direct comparison of detailed models , 2010, 1009.0765.

[117]  R. Price,et al.  DETECTING MASSIVE GRAVITONS USING PULSAR TIMING ARRAYS , 2010, 1008.2561.

[118]  C. Deffayet,et al.  Recovery of general relativity in massive gravity via the Vainshtein mechanism , 2010, 1007.4506.

[119]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[120]  C. Furtado,et al.  Dynamical Chern-Simons modified gravity and Friedmann-Robertson-Walker metric , 2010, 1005.1911.

[121]  C. Mishra,et al.  Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope , 2010, 1005.0304.

[122]  C. Will,et al.  Effect of spin precession on bounding the mass of the graviton using gravitational waves from massive black hole binaries , 2010 .

[123]  V. Cardoso,et al.  Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity , 2010, 1004.4007.

[124]  J. Gair,et al.  LISA extreme-mass-ratio inspiral events as probes of the black hole mass function , 2010, 1004.1921.

[125]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[126]  P. Ajith,et al.  Constraining the mass of the graviton using coalescing black-hole binaries , 2010, 1004.0284.

[127]  G. Contopoulos,et al.  Observable signature of a background deviating from the Kerr metric , 2010, 1003.3120.

[128]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[129]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[130]  L. Price,et al.  Gravitational self-force for a particle in circular orbit around the Schwarzschild black hole , 2010 .

[131]  N. Sago,et al.  Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole , 2010, 1002.2386.

[132]  F. Feroz,et al.  Search for spinning black hole binaries in mock LISA data using a genetic algorithm , 2010, 1001.5380.

[133]  Yanbei Chen,et al.  Gravitational wave signatures of the absence of an event horizon. II. Extreme mass ratio inspirals in the spacetime of a thin-shell gravastar , 2010, 1001.3031.

[134]  S. McWilliams Constraining the braneworld with gravitational wave observations. , 2009, Physical review letters.

[135]  D. Spergel,et al.  Constraining the evolutionary history of Newton's constant with gravitational wave observations , 2009, 0912.2724.

[136]  A. Loeb,et al.  Constraining parity violation in gravity with measurements of neutron-star moments of inertia , 2009, 0912.2736.

[137]  S. Babak,et al.  Mock LISA data challenge for the Galactic white dwarf binaries , 2009, 0911.3020.

[138]  T. Harko,et al.  Thin accretion disk signatures in dynamical Chern–Simons-modified gravity , 2009, 0909.1267.

[139]  Takahiro Tanaka,et al.  DECIGO/BBO as a Probe to Constrain Alternative Theories of Gravity , 2009, 0908.3283.

[140]  Takahiro Tanaka,et al.  Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA , 2009, 0906.4269.

[141]  C. Deloye,et al.  ENERGY DISSIPATION THROUGH QUASI-STATIC TIDES IN WHITE DWARF BINARIES , 2009, 0904.1953.

[142]  S. Larson,et al.  Constraining the black hole mass spectrum with gravitational wave observations - I. The error kernel , 2009, 0903.2059.

[143]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of nonspinning, equal-mass black holes , 2009, 0902.0790.

[144]  Michael Martin Nieto,et al.  Photon and graviton mass limits , 2008, 0809.1003.

[145]  T. Sotiriou,et al.  f(R) Theories Of Gravity , 2008, 0805.1726.

[146]  S. Larson,et al.  THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS , 2007, 0705.3272.

[147]  Yi Pan,et al.  Effective-one-body waveforms calibrated to numerical relativity simulations: coalescence of non-precessing, spinning, equal-mass black holes , 2009, 0912.3466.

[148]  B. Schutz From Classical Theory to Quantum Gravity , 2009 .

[149]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[150]  S. Kawamura,et al.  Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1-1 Hz , 2009, 0911.0525.

[151]  M. Bebronne Theoretical and phenomenological aspects of theories with massive gravitons , 2009, 0910.4066.

[152]  F. Pretorius,et al.  Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.

[153]  Yanbei Chen,et al.  Gravitational wave signatures of the absence of an event horizon: Nonradial oscillations of a thin-shell gravastar , 2009, 0909.0287.

[154]  L. Barack Gravitational self-force in extreme mass-ratio inspirals , 2009, 0908.1664.

[155]  V. Cardoso,et al.  Perturbations of Schwarzschild black holes in dynamical Chern-Simons modified gravity , 2009, 0907.5008.

[156]  M. Sereno,et al.  Parameter estimation for coalescing massive binary black holes with LISA using the full 2-post-Newtonian gravitational waveform and spin-orbit precession , 2009, 0907.3318.

[157]  N. Yunes,et al.  Chern-Simons Modified General Relativity , 2009, 0907.2562.

[158]  R. Sturani,et al.  Extracting the three- and four-graviton vertices from binary pulsars and coalescing binaries , 2009, 0907.2186.

[159]  C. Will,et al.  Bounding the mass of the graviton with gravitational waves: Effect of spin precessions in massive black hole binaries , 2009, 0906.3602.

[160]  O. Jennrich,et al.  LISA technology and instrumentation , 2009, 0906.2901.

[161]  José A. González,et al.  Erratum: Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries [Phys. Rev. D 77, 104017 (2008)] , 2009 .

[162]  G. Contopoulos,et al.  How to observe a non-Kerr spacetime using gravitational waves. , 2009, Physical review letters.

[163]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[164]  C. Sopuerta,et al.  Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity , 2009, 0904.4501.

[165]  Walter Fichter,et al.  LISA Pathfinder: the experiment and the route to LISA , 2009 .

[166]  Jonathan R. Gair,et al.  Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals , 2009 .

[167]  F. Feroz,et al.  Use of the MULTINEST algorithm for gravitational wave data analysis , 2009, 0904.1544.

[168]  K. Arun,et al.  Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates , 2009, 0904.1190.

[169]  J. Gair,et al.  Cosmic swarms: a search for supermassive black holes in the LISA data stream with a hybrid evolutionary algorithm , 2009, 0903.3733.

[170]  P. Wolf,et al.  Testing General Relativity with Atomic Clocks , 2009, 0903.1166.

[171]  V. Kalogera,et al.  INTERACTING BINARIES WITH ECCENTRIC ORBITS. II. SECULAR ORBITAL EVOLUTION DUE TO NON-CONSERVATIVE MASS TRANSFER , 2009, 0903.0621.

[172]  K. Hayama,et al.  Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers , 2009, 0903.0528.

[173]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[174]  S. Tanda,et al.  Rotating Black Hole in Extended Chern-Simons Modified Gravity , 2009, 0902.4767.

[175]  F. Pretorius,et al.  Dynamical Chern-Simons modified gravity: Spinning black holes in the slow-rotation approximation , 2009, 0902.4669.

[176]  J. Gair,et al.  An algorithm for the detection of extreme mass ratio inspirals in LISA data , 2009, 0902.4133.

[177]  Neil J. Cornish,et al.  Bayesian approach to the detection problem in gravitational wave astronomy , 2009, 0902.0368.

[178]  C. Hopman,et al.  Extreme mass ratio inspiral rates: dependence on the massive black hole mass , 2009, 0901.1667.

[179]  S. Capozziello,et al.  a General Solution in the Newtonian Limit of f(R)-GRAVITY , 2009, 0901.0448.

[180]  J. Yokoyama,et al.  Gravitational-wave background as a probe of the primordial black-hole abundance. , 2008, Physical review letters.

[181]  C. Will Carter-like constants of the motion in Newtonian gravity and electrodynamics. , 2008, Physical review letters.

[182]  J. Gair Probing black holes at low redshift using LISA EMRI observations , 2008, 0811.0188.

[183]  L. Finn,et al.  Constraining effective quantum gravity with LISA , 2008, 0811.0181.

[184]  D. Spergel,et al.  Double-binary-pulsar test of Chern-Simons modified gravity , 2008, 0810.5541.

[185]  A. Sesana,et al.  LISA detection of massive black hole binaries: imprint of seed populations and extreme recoils , 2008, 0810.5554.

[186]  R. Genzel,et al.  MONITORING STELLAR ORBITS AROUND THE MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 2008, 0810.4674.

[187]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[188]  J. Cembranos Dark matter from R2 gravity. , 2008, Physical review letters.

[189]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[190]  M. Colpi,et al.  Physics of relativistic objects in compact binaries: from birth to coalescence , 2009 .

[191]  P. Brady Gravitational Collapse and Spacetime Singularities A. Einstein Equations in Spherical Symmetry , 2022 .

[192]  J. Gair The black hole symphony: probing new physics using gravitational waves , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[193]  Michele Vallisneri,et al.  A LISA data-analysis primer , 2008, 0812.0751.

[194]  Edward K. Porter,et al.  Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.

[195]  R. Price,et al.  Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves , 2008 .

[196]  Slava G. Turyshev,et al.  Experimental tests of general relativity: recent progress and future directions , 2008, 0806.1731.

[197]  José A. Font,et al.  Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity , 2008, Living reviews in relativity.

[198]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[199]  A. Vecchio,et al.  Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection , 2008, 0807.4483.

[200]  Jeandrew Brink Spacetime encodings. I. A spacetime reconstruction problem , 2008, 0807.1178.

[201]  Jeandrew Brink Spacetime encodings. II. Pictures of integrability , 2008, 0807.1179.

[202]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[203]  D. Psaltis Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum , 2008, Living reviews in relativity.

[204]  P. Ajith,et al.  Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .

[205]  N. Cornish Detection strategies for extreme mass ratio inspirals , 2008, 0804.3323.

[206]  N. Yunes,et al.  Chern-Simons modified gravity as a torsion theory and its interaction with fermions , 2008, 0804.1797.

[207]  E. Porter,et al.  Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA , 2008, 0804.0332.

[208]  E. Barausse,et al.  Perturbed Kerr black holes can probe deviations from general relativity. , 2008, Physical review letters.

[209]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[210]  J. Yokoyama,et al.  Space-based gravitational-wave detectors can determine the thermal history of the early Universe , 2008, 0802.2452.

[211]  Marta Volonteri,et al.  Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.

[212]  A. Vecchio,et al.  Bayesian approach to the follow-up of candidate gravitational wave signals , 2008, 0801.4313.

[213]  T. Jacobson Einstein-aether gravity: a status report , 2008, 0801.1547.

[214]  L. Finn,et al.  Gravitational-wave probe of effective quantum gravity , 2007, 0712.2542.

[215]  Z. Haiman,et al.  Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart , 2007, 0712.1144.

[216]  Perturbations of Schwarzschild black holes in Chern-Simons modified gravity , 2007, 0712.1028.

[217]  S Schlamminger,et al.  Test of the equivalence principle using a rotating torsion balance. , 2007, Physical review letters.

[218]  L. Rezzolla,et al.  Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals , 2007, 0711.4558.

[219]  J. Evans,et al.  Standard cosmological evolution in a wide range of f(R) models , 2007, 0711.3695.

[220]  N. Yunes,et al.  How do black holes spin in Chern-Simons modified gravity? , 2007, 0711.1868.

[221]  D. Psaltis,et al.  Kerr black holes are not unique to general relativity. , 2007, Physical review letters.

[222]  M. Vallisneri,et al.  Sensitivity and parameter-estimation precision for alternate LISA configurations , 2007, 0710.4369.

[223]  J. Moffat,et al.  Testing Modified Gravity with Globular Cluster Velocity Dispersions , 2007, 0708.1935.

[224]  J. Gair,et al.  Observable properties of orbits in exact bumpy spacetimes , 2007, 0708.0628.

[225]  A. Sintes,et al.  LISA observations of supermassive black holes: Parameter estimation using full post-Newtonian inspiral waveforms , 2007, 0707.4434.

[226]  A. Vecchio,et al.  Probing white dwarf interiors with LISA: periastron precession in eccentric double white dwarfs. , 2007, Physical review letters.

[227]  K. Holley-Bockelmann,et al.  Relativistic Effects in Extreme Mass Ratio Gravitational Wave Bursts , 2007, 0704.2612.

[228]  M. Vallisneri Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.

[229]  G. Lovelace,et al.  Generalization of Ryan's theorem: Probing tidal coupling with gravitational waves from nearly circular, nearly equatorial, extreme-mass-ratio inspirals , 2007, gr-qc/0702146.

[230]  M. Stanley :Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves , 2008 .

[231]  Michele Maggiore,et al.  Theory and experiments , 2008 .

[232]  T Tanaka,et al.  DECIGO pathfinder , 2008 .

[233]  E. Barausse,et al.  Curvature singularities, tidal forces and the viability of Palatini f(R) gravity , 2007, 0712.1141.

[234]  M. Maggiore Gravitational Waves: Volume 1: Theory and Experiments , 2007 .

[235]  Duncan A. Brown,et al.  Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals. , 2007, Physical review letters.

[236]  Frans Pretorius,et al.  Binary Black Hole Coalescence , 2007, 0710.1338.

[237]  S. Ravi Bayesian Logical Data Analysis for the Physical Sciences: a Comparative Approach with Mathematica® Support , 2007 .

[238]  J. Moffat,et al.  Modified Gravity: Cosmology without dark matter or Einstein's cosmological constant , 2007, 0710.0364.

[239]  E. Barausse Relativistic dynamical friction in a collisional fluid , 2007, 0709.0211.

[240]  C. Broeck,et al.  Higher signal harmonics, LISA's angular resolution, and dark energy , 2007, 0707.3920.

[241]  Jaime S. Cardoso,et al.  Matched-filtering and parameter estimation of ringdown waveforms , 2007, 0707.1202.

[242]  F. Rasio,et al.  Interacting Binaries with Eccentric Orbits: Secular Orbital Evolution Due to Conservative Mass Transfer , 2007, 0706.4312.

[243]  S. Capozziello,et al.  Extended theories of gravity and their cosmological and astrophysical applications , 2007, 0706.1146.

[244]  Hyosun Kim,et al.  Dynamical Friction of a Circular-Orbit Perturber in a Gaseous Medium , 2007, 1010.1995.

[245]  A three-stage search for supermassive black-hole binaries in LISA data , 2007, 0704.2447.

[246]  Duncan A. Brown,et al.  Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.

[247]  Daniel Kennefick,et al.  Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves , 2007 .

[248]  N. Yunes,et al.  Parametrized post-Newtonian expansion of Chern-Simons gravity , 2007, 0704.0299.

[249]  James Clark,et al.  Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets , 2007, 0704.0048.

[250]  N. Yunes,et al.  New post-Newtonian parameter to test Chern-Simons gravity. , 2007, Physical review letters.

[251]  E. Barausse,et al.  A no-go theorem for polytropic spheres in Palatini f(R) gravity , 2007, gr-qc/0703132.

[252]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[253]  Y. Itoh,et al.  The Post-Newtonian Approximation for Relativistic Compact Binaries , 2007, Living reviews in relativity.

[254]  José A. González,et al.  Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.

[255]  M. Seifert Stability of spherically symmetric solutions in modified theories of gravity , 2007, gr-qc/0703060.

[256]  J. Brownstein,et al.  The Bullet Cluster 1E0657-558 evidence shows modified gravity in the absence of dark matter , 2007, astro-ph/0702146.

[257]  Raúl Rueda,et al.  Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .

[258]  F. L. Dubeibe,et al.  Chaotic dynamics around astrophysical objects with nonisotropic stresses , 2007, gr-qc/0701065.

[259]  S. Larson,et al.  Gravitational Wave Bursts from the Galactic Massive Black Hole , 2006, astro-ph/0612337.

[260]  C. Cutler,et al.  Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes , 2006, gr-qc/0612029.

[261]  J. C. Cornish Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.

[262]  N. Sago,et al.  Gravitational self force on a particle in orbit around a schwarzschild black hole , 2007 .

[263]  L. Rezzolla,et al.  Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes , 2006, gr-qc/0612123.

[264]  E. Porter,et al.  The search for massive black hole binaries with LISA , 2006, gr-qc/0612091.

[265]  L. Finn,et al.  The resolving power of LISA: comparing techniques for binary analysis , 2006 .

[266]  V. Kalogera,et al.  Interacting Binaries with Eccentric Orbits , 2006 .

[267]  Vaseem Chengazi Technology and instrumentation , 2006 .

[268]  J. Gair,et al.  Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR) , 2006, gr-qc/0610046.

[269]  K. Holley-Bockelmann,et al.  Event Rate for Extreme Mass Ratio Burst Signals in the Laser Interferometer Space Antenna Band , 2006 .

[270]  J. Gair,et al.  Automatic Bayesian inference for LISA data analysis strategies , 2006, gr-qc/0609010.

[271]  A. Coley,et al.  Kinematic and Weyl singularities , 2006, gr-qc/0608134.

[272]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[273]  T. Regimbau,et al.  Capture Rates of Compact Objects by Supermassive Black Holes , 2006, astro-ph/0606427.

[274]  I. Rothstein,et al.  Towers of gravitational theories , 2006, hep-th/0605238.

[275]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[276]  E. Berti,et al.  Supermassive black holes or boson stars? Hair counting with gravitational wave detectors , 2006, gr-qc/0605101.

[277]  A. Vecchio,et al.  The LISA verification binaries , 2006, astro-ph/0605227.

[278]  Naoki Seto,et al.  The Japanese space gravitational wave antenna—DECIGO , 2006 .

[279]  B. Iyer,et al.  Probing the nonlinear structure of general relativity with black hole binaries , 2006, gr-qc/0604067.

[280]  B. Iyer,et al.  Testing post-Newtonian theory with gravitational wave observations , 2006, gr-qc/0604018.

[281]  Pau Amaro-Seoane,et al.  Stellar Remnants in Galactic Nuclei: Mass Segregation , 2006 .

[282]  Astronomy,et al.  Stellar remnants in galactic nuclei: mass segregation , 2006, astro-ph/0603280.

[283]  C. Eling,et al.  Einstein-ther Theory , 2006 .

[284]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[285]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[286]  A. Sintes,et al.  Parameter estimation of compact binaries using the inspiral and ringdown waveforms , 2006, gr-qc/0601072.

[287]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[288]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[289]  J. Harms,et al.  Big Bang Observer and the neutron-star-binary subtraction problem , 2005, gr-qc/0511092.

[290]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[291]  S. Babak,et al.  Mapping spacetimes with LISA: inspiral of a test body in a ‘quasi-Kerr’ field , 2005, gr-qc/0510057.

[292]  S. Hughes,et al.  Gravitational wave snapshots of generic extreme mass ratio inspirals , 2005, gr-qc/0509101.

[293]  J. Brownstein,et al.  Galaxy Rotation Curves without Nonbaryonic Dark Matter , 2005, astro-ph/0506370.

[294]  J. Moffat Scalar–tensor–vector gravity theory , 2005, gr-qc/0506021.

[295]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[296]  S. Alexander,et al.  Can the string scale be related to the cosmic baryon asymmetry? , 2004, hep-th/0409014.

[297]  M. Duff,et al.  A celebration of the life and works of stanley deser , 2006 .

[298]  S. Deser,et al.  Deserfest : a celebration of the life and works of Stanley Deser : Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, USA, 3-5 April 2004 , 2006 .

[299]  Bernard F. Schutz,et al.  LISA: Probing the Universe with Gravitational Waves , 2006 .

[300]  R. Drever Gravity’s Shadow: The Search for Gravitational Waves , 2005 .

[301]  A. Ashtekar 100 Years Of Relativity , 2005 .

[302]  John G. Barrow Varying constants , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[303]  Abhay Ashtekar,et al.  100 years of relativity : space-time structure : Einstein and beyond , 2005 .

[304]  P. Laguna PROBING SPACE-TIME THROUGH NUMERICAL SIMULATIONS , 2005 .

[305]  S. Shapiro Numerical relativity at the frontier , 2005, gr-qc/0509094.

[306]  The nearly Newtonian regime in non-linear theories of gravity , 2005, gr-qc/0507027.

[307]  M. Miller,et al.  Binary Encounters with Supermassive Black Holes: Zero-Eccentricity LISA Events , 2005, astro-ph/0507133.

[308]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[309]  N. Cornish,et al.  Beyond LISA: Exploring future gravitational wave missions , 2005, gr-qc/0506015.

[310]  G. Lovelace,et al.  Tidal coupling of a schwarzschild black hole and circularly orbiting moon , 2005, gr-qc/0505156.

[311]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica® Support , 2005 .

[312]  D. Comelli Born-Infeld-type gravity , 2005, gr-qc/0505088.

[313]  M. Vallisneri Geometric time delay interferometry , 2005, gr-qc/0504145.

[314]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[315]  Jeffrey A. Edlund,et al.  White-dwarf-white-dwarf galactic background in the LISA data , 2005 .

[316]  A. Buonanno,et al.  Testing general relativity and probing the merger history of massive black holes with LISA , 2005, gr-qc/0504017.

[317]  Philip C. Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Acknowledgements , 2005 .

[318]  N. Sawado,et al.  Regular and black hole solutions in the Einstein–Skyrme theory with negative cosmological constant , 2005, gr-qc/0503123.

[319]  Melvyn B. Davies,et al.  The Stars of the Galactic Center , 2005, astro-ph/0503441.

[320]  Piotr Jaranowski,et al.  Formalism and Sample Applications : The Gaussian Case , 2005 .

[321]  Can the Laser Interferometer Space Antenna resolve the distance to the large magellanic cloud , 2005 .

[322]  J. Gair,et al.  Detecting extreme mass ratio inspirals with LISA using time–frequency methods: II. Search characterization , 2005, gr-qc/0502100.

[323]  B. Foster Metric redefinitions in Einstein-Aether theory , 2005, gr-qc/0502066.

[324]  P. Steinhardt,et al.  Controlling chaos through compactification in cosmological models with a collapsing phase , 2005, hep-th/0502108.

[325]  R. Sanders A tensor—vector—scalar framework for modified dynamics and cosmic dark matter , 2005, astro-ph/0502222.

[326]  B. Iyer,et al.  Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing : The nonspinning case , 2004, gr-qc/0411146.

[327]  A. Buonanno,et al.  Estimating spinning binary parameters and testing alternative theories of gravity with LISA , 2004, gr-qc/0411129.

[328]  J. Gair,et al.  Gravitational-wave signature of an inspiral into a supermassive horizonless object , 2004, astro-ph/0411478.

[329]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[330]  Massimo Tinto,et al.  Time delay interferometry , 2003, Living Reviews in Relativity.

[331]  M. Vallisneri Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.

[332]  B. F. Whiting,et al.  A Relativist's Toolkit, The Mathematics of Black-Hole Mechanics , 2004 .

[333]  David A. Jones Bounding the Mass of the Graviton Using Eccentric Binaries , 2004, gr-qc/0411123.

[334]  James G. Williams,et al.  Williams et al. Reply (to the Comment by Dumin on"Progress in Lunar Laser Ranging Tests of Relativistic Gravity") , 2006, gr-qc/0612171.

[335]  E. C. Pavlis,et al.  A confirmation of the general relativistic prediction of the Lense–Thirring effect , 2004, Nature.

[336]  J. Bekenstein Relativistic gravitation theory for the modified newtonian dynamics paradigm , 2004 .

[337]  S. Hughes,et al.  Golden Binary Gravitational-Wave Sources: Robust Probes of Strong-Field Gravity , 2004, astro-ph/0410148.

[338]  A. Cooray Gravitational‐wave background of neutron star–white dwarf binaries , 2004, astro-ph/0406467.

[339]  T. Damour,et al.  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[340]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[341]  E. Poisson A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics , 2004 .

[342]  C. Will,et al.  Testing alternative theories of gravity using LISA , 2004, gr-qc/0403100.

[343]  A. Cooray,et al.  LISA measurement of gravitational wave background anisotropy: Hexadecapole moment via a correlation analysis , 2004, astro-ph/0403259.

[344]  S. Hughes,et al.  Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits , 2004, gr-qc/0402063.

[345]  P. Negi,et al.  Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[346]  K. Maeda,et al.  Regular and Black Hole Skyrmions with Axisymmetry , 2004, gr-qc/0401020.

[347]  A. Cooray,et al.  Graviton mass from close white dwarf binaries detectable with LISA , 2003, astro-ph/0311054.

[348]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[349]  J. Khoury,et al.  Chameleon fields: awaiting surprises for tests of gravity in space. , 2003, Physical review letters.

[350]  E. Flanagan Higher-order gravity theories and scalar?tensor theories , 2003, gr-qc/0309015.

[351]  B. Krishnan,et al.  Black-hole spectroscopy: testing general relativity through gravitational-wave observations , 2003, gr-qc/0309007.

[352]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[353]  A. Vecchio LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[354]  E. Poisson A Relativist's Toolkit: Contents , 2004 .

[355]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[356]  G. Amelino-Camelia The three perspectives on the quantum-gravity problem and their implications for the fate of Lorentz symmetry , 2003, gr-qc/0309054.

[357]  R. Jackiw,et al.  Chern-Simons modification of general relativity , 2003, gr-qc/0308071.

[358]  I. Stairs Testing General Relativity with Pulsar Timing , 2003, Living reviews in relativity.

[359]  A. Nelson,et al.  TESTS OF THE GRAVITATIONAL INVERSE-SQUARE LAW , 2003, hep-ph/0307284.

[360]  T. Chiba 1/R gravity and scalar-tensor gravity , 2003, astro-ph/0307338.

[361]  G. J.FernandoBarbero,et al.  Lorentz violations and Euclidean signature metrics , 2003, Physical Review D.

[362]  A. Dolgov,et al.  Can modified gravity explain accelerated cosmic expansion , 2003, astro-ph/0307285.

[363]  H. Tagoshi,et al.  Analytic Black Hole Perturbation Approach to Gravitational Radiation , 2003, Living reviews in relativity.

[364]  P. Madau,et al.  The Formation of Galaxy Stellar Cores by the Hierarchical Merging of Supermassive Black Holes , 2003, astro-ph/0304389.

[365]  Alison J. Farmer,et al.  The gravitational wave background from cosmological compact binaries , 2003, astro-ph/0304393.

[366]  S. Capozziello,et al.  Quintessence without scalar fields , 2003, astro-ph/0303041.

[367]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[368]  S. Babak,et al.  FINITE-RANGE GRAVITY AND ITS ROLE IN GRAVITATIONAL WAVES, BLACK HOLES AND COSMOLOGY , 2002, gr-qc/0209006.

[369]  R. Blandford,et al.  Black Hole Mass and Spin Coevolution by Mergers , 2002, astro-ph/0208484.

[370]  M. Freitag Gravitational Waves from Stars Orbiting the Sagittarius A* Black Hole , 2002, astro-ph/0211209.

[371]  P. Letelier,et al.  Geodesic chaos around quadrupolar deformed centers of attraction. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[372]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[373]  N. Cornish,et al.  The LISA response function , 2002, gr-qc/0209011.

[374]  J. Silk,et al.  Massive black hole remnants of the first stars in galactic haloes , 2002, astro-ph/0208189.

[375]  Quantum Black Holes as Holograms in AdS Braneworlds , 2002, hep-th/0206155.

[376]  A. Bauch,et al.  New experimental limit on the validity of local position invariance , 2002 .

[377]  S. Larson,et al.  LISA, binary stars, and the mass of the graviton , 2002, gr-qc/0209101.

[378]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[379]  Takahiro Tanaka Classical Black Hole Evaporation in Randall-Sundrum Infinite Braneworld , 2002, gr-qc/0203082.

[380]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[381]  D. Merritt,et al.  Triaxial Black Hole Nuclei , 2001, astro-ph/0111020.

[382]  P. Sutton,et al.  Bounding the mass of the graviton using binary pulsar observations , 2001, gr-qc/0109049.

[383]  B. Iyer,et al.  Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order , 2001, gr-qc/0105099.

[384]  R. Penrose,et al.  Gravitational Collapse : The Role of General Relativity 1 , 2002 .

[385]  S. Larson Online Sensitivity Curve Generator , 2002 .

[386]  K. Holley-Bockelmann,et al.  The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes , 2001, astro-ph/0111029.

[387]  S. Hughes Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.

[388]  S. Kawamura,et al.  Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space. , 2001, Physical review letters.

[389]  S. F. Portegies Zwart,et al.  The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. , 2001, astro-ph/0105221.

[390]  C. Will,et al.  Testing scalar-tensor gravity using space gravitational-wave interferometers , 2001, gr-qc/0109044.

[391]  J. Greiner,et al.  A New Way to Detect Massive Black Holes in Galaxies: The Stellar Remnants of Tidal Disruption , 2001, astro-ph/0112434.

[392]  C. Lämmerzahl,et al.  Principles of equivalence: their role in gravitation physics and experiments that test them , 2001, gr-qc/0103067.

[393]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[394]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[395]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[396]  V. Narayanan,et al.  The Merger History of Supermassive Black Holes in Galaxies , 2001, astro-ph/0101196.

[397]  P. Letelier,et al.  Chaos in pseudo-Newtonian black holes with halos , 2001, astro-ph/0101140.

[398]  G. Nelemans,et al.  Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars , 2001, astro-ph/0101123.

[399]  G. Nelemans,et al.  Population synthesis for double white dwarfs. I. Close detached systems. , 2000, astro-ph/0010457.

[400]  S. Kawamura,et al.  Response of interferometric detectors to scalar gravitational waves , 2000, gr-qc/0006079.

[401]  Pasadena,et al.  Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA , 2000, gr-qc/0007074.

[402]  G. Kauffmann,et al.  The Correlation between black hole mass and bulge velocity dispersion in hierarchical galaxy formation models , 2000, astro-ph/0007369.

[403]  P. Bender,et al.  Gravitational Radiation from Helium Cataclysmics , 2000 .

[404]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[405]  Andrew Gould,et al.  A Cluster of Black Holes at the Galactic Center , 2000, astro-ph/0003269.

[406]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[407]  S. Larson,et al.  Using binary stars to bound the mass of the graviton , 1999, gr-qc/9912102.

[408]  R. Hellings,et al.  The angular resolution of space-based gravitational wave detectors , 1999, gr-qc/9910116.

[409]  R. Narayan Hydrodynamic Drag on a Compact Star Orbiting a Supermassive Black Hole , 1999, astro-ph/9907328.

[410]  A. Nicolis,et al.  Detection strategies for scalar gravitational waves with interferometers and resonant spheres , 1999, gr-qc/9907055.

[411]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[412]  A. Celotti,et al.  Astrophysical evidence for the existence of black holes , 1999, astro-ph/9912186.

[413]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[414]  L. Randall,et al.  An Alternative to compactification , 1999, hep-th/9906064.

[415]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[416]  L. Ho Supermassive Black Holes in Galactic Nuclei , 1998, astro-ph/9803307.

[417]  T. D. Matteo,et al.  Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment , 2000 .

[418]  J. Krolik Active Galactic Nuclei , 1998 .

[419]  D. Lorimer Binary and Millisecond Pulsars , 2005, Living reviews in relativity.

[420]  T. Damour,et al.  Gravitational wave versus binary - pulsar tests of strong field gravity , 1998, gr-qc/9803031.

[421]  B. Kleihaus,et al.  Sequences of globally regular and black hole solutions in SU(4) Einstein-Yang-Mills theory , 1998, hep-th/9802143.

[422]  C. Will Bounding the mass of the graviton using gravitational wave observations of inspiralling compact binaries , 1997, gr-qc/9709011.

[423]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[424]  S. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[425]  B R Greene,et al.  String theory. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[426]  J. Polchinski Superstring theory and beyond , 1998 .

[427]  J. Polchinski String Theory: Calabi–Yau compactification , 1998 .

[428]  Bernard F. Schutz,et al.  LISA. Laser Interferometer Space Antenna for the detection and observation of gravitational waves. An international project in the field of Fundamental Physics in Space , 1998 .

[429]  J. Polchinski String theory. Vol. 2: Superstring theory and beyond , 1998 .

[430]  F. D. Ryan Accuracy of estimating the multipole moments of a massive body from the gravitational waves of a binary inspiral , 1997 .

[431]  Peter L. Bender,et al.  Confusion noise level due to galactic and extragalactic binaries , 1997 .

[432]  F. D. Ryan Spinning boson stars with large self-interaction , 1997 .

[433]  P. Letelier,et al.  Chaos in black holes surrounded by gravitational waves , 1997, gr-qc/9706025.

[434]  Kevin P. Rauch,et al.  Resonant tidal disruption in galactic nuclei , 1996 .

[435]  K. Maeda,et al.  Chaos in static axisymmetric spacetimes: I. Vacuum case , 1996 .

[436]  S. Tremaine,et al.  Resonant relaxation in stellar systems , 1996, astro-ph/9603018.

[437]  Cutler,et al.  Gravitational helioseismology? , 1996, Physical review. D, Particles and fields.

[438]  F. D. Ryan,et al.  Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. , 1995, Physical review. D, Particles and fields.

[439]  Blanchet,et al.  Detecting a tail effect in gravitational-wave experiments. , 1995, Physical review letters.

[440]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[441]  Naomasa Nakai,et al.  Evidence for a black hole from high rotation velocities in a sub-parsec region of NGC4258 , 1995, Nature.

[442]  Nakamura,et al.  Scalar-type gravitational wave emission from gravitational collapse in Brans-Dicke theory: Detectability by a laser interferometer. , 1994, Physical review. D, Particles and fields.

[443]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. IV. The gravitational wave tail. , 1993, Physical review. D, Particles and fields.

[444]  J. Norton General covariance and the foundations of general relativity: eight decades of dispute , 1993 .

[445]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. III. Transition from inspiral to plunge. , 1993, Physical review. D, Particles and fields.

[446]  T. Damour,et al.  Nonperturbative strong-field effects in tensor-scalar theories of gravitation. , 1993, Physical review letters.

[447]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[448]  S. Mignemi,et al.  Dilaton-axion hair for slowly rotating Kerr black holes , 1992, hep-th/9206018.

[449]  V. S. Manko,et al.  Generalizations of the Kerr and Kerr-Newman metrics possessing an arbitrary set of mass-multipole moments , 1992 .

[450]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. II. Higher-order wave forms and radiation recoil. , 1992, Physical review. D, Particles and fields.

[451]  J. McClintock,et al.  Black Holes in Binary Systems , 1992 .

[452]  S. Droz,et al.  New black hole solutions with hair , 1991 .

[453]  C. Will,et al.  Coalescing Binary Systems of Compact Objects to (Post)5/2‐Newtonian Order a , 1991 .

[454]  C. Will,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order: Late-time evolution and gravitational-radiation emission. , 1990, Physical review. D, Particles and fields.

[455]  Maximilian Kreuzer,et al.  The gravitational anomalies , 1990 .

[456]  N. Straumann,et al.  Instability of a colored black hole solution , 1990 .

[457]  D. Howard,et al.  Einstein and the History of General Relativity , 1990 .

[458]  C. Hoenselaers,et al.  Multipole moments of axisymmetric systems in relativity , 1989 .

[459]  M. Soffel Relativity in astrometry, Celestial mechanics and geodesy , 1989 .

[460]  M. Tabor Chaos and Integrability in Nonlinear Dynamics: An Introduction , 1989 .

[461]  B. Schutz,et al.  Gravitational wave data analysis , 1989 .

[462]  Talmadge,et al.  Model-independent constraints on possible modifications of Newtonian gravity. , 1988, Physical review letters.

[463]  E. Groten,et al.  Relativistic effects in GPS , 1988 .

[464]  W. Pauli,et al.  Über relativistische feldgleichungen von teilchen mit beliebigem spin im elektromagnetischen feld , 1988 .

[465]  M. Gasperini Singularity prevention and broken Lorentz symmetry , 1987 .

[466]  H. Wahlquist The Doppler response to gravitational waves from a binary star source , 1987 .

[467]  Jacobs,et al.  New limits on spatial anisotropy from optically-pumped sup201Hg and 199Hg. , 1986, Physical review letters.

[468]  Suen Distorted black holes in terms of multipole moments. , 1986, Physical review. D, Particles and fields.

[469]  I. Iben,et al.  On the number-mass distribution of degenerate dwarfs produced by interacting binaries and evidence for mergers of low-mass helium dwarfs , 1986 .

[470]  A. Vilenkin,et al.  Classical and quantum cosmology of the Starobinsky inflationary model. , 1985, Physical review. D, Particles and fields.

[471]  J. Norton What was Einstein's principle of equivalence? , 1985 .

[472]  L. Finn Gravitational waves from solar oscillations: Proposal for a transition-zone test of general relativity , 1985 .

[473]  C. Murray Relativity in astrometry , 1985 .

[474]  I. Iben,et al.  The evolution of low-mass close binaries influenced by the radiation of gravitational waves and by a magnetic stellar wind , 1984 .

[475]  W. Bonnor THE MATHEMATICAL THEORY OF BLACK HOLES (International Series of Monographs on Physics, 69) , 1984 .

[476]  M. Rees BLACK HOLE MODELS FOR ACTIVE GALACTIC NUCLEI , 1984 .

[477]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[478]  R. Hellings,et al.  Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .

[479]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[480]  F. Coroniti,et al.  Accretion disk models for QSOs and active galactic nuclei - The role of magnetic viscosity , 1981 .

[481]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[482]  W. Press,et al.  Gravitational waves. , 1980, Science.

[483]  P. Rastall The Newtonian theory of gravitation and its generalization , 1979 .

[484]  M. Francaviglia,et al.  Remarks on certain separability structures and their applications to general relativity , 1979 .

[485]  R. Wagoner,et al.  Slowly rotating, relativistic stars. , 1978 .

[486]  R. Hellings Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave detection , 1978 .

[487]  T. Piran The role of viscosity and cooling mechanisms in the stability of accretion disks. , 1978 .

[488]  H. Paik Response of a disk antenna to scalar and tensor gravitational waves , 1977 .

[489]  S. Blinnikov,et al.  Disk accretion onto a black hole at subcritical luminosity. , 1977 .

[490]  N. Rosen The Bi-metric theory of gravitation , 1976 .

[491]  Nikolai I. Shakura,et al.  A Theory of the Instability of disk Accretion on to Black Holes and the Variability of Binary X-ray Sources, Galactic Nuclei and Quasars⋆ , 1976 .

[492]  D. C. Robinson Uniqueness of the Kerr black hole , 1975 .

[493]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .

[494]  K. Goeke,et al.  Application of the adiabatic, time-dependent Hartree-Bogolyubov approximation to a solvable model , 1974 .

[495]  N Woodhouse,et al.  The Large Scale Structure of Space–Time , 1974 .

[496]  R. O. Hansen Multipole moments of stationary space-times , 1974 .

[497]  Douglas M. Eardley,et al.  Black Holes in Binary Systems: Instability of Disk Accretion , 1974 .

[498]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[499]  N. Rosen A bi-metric theory of gravitation. II , 1973 .

[500]  Robert E. Wilson,et al.  BLACK HOLES IN BINARY SYSTEMS , 1973 .

[501]  A. Lightman,et al.  New two-metric theory of gravity with prior geometry , 1973 .

[502]  L. A. King Theories of gravity , 1973 .

[503]  R. Wagoner,et al.  Gravitational-wave observations as a tool for testing relativistic gravity , 1973 .

[504]  N. Rosen A bi-metric theory of gravitation , 1973 .

[505]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .

[506]  A. Vainshtein,et al.  To the problem of nonvanishing gravitation mass , 1972 .

[507]  M. Rees,et al.  On Quasars, Dust and the Galactic Centre , 1971 .

[508]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[509]  R. Penrose,et al.  On quadratic first integrals of the geodesic equations for type {22} spacetimes , 1970 .

[510]  M. Veltman,et al.  Massive and mass-less Yang-Mills and gravitational fields , 1970 .

[511]  R. Penrose,et al.  The singularities of gravitational collapse and cosmology , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[512]  R. Geroch Multipole Moments. II. Curved Space , 1970 .

[513]  V. Zakharov Linearized gravitation theory and the graviton mass , 1970 .

[514]  B. Carter Global structure of the Kerr family of gravitational fields , 1968 .

[515]  F. J. Ernst New Formulation of the Axially Symmetric Gravitational Field Problem. II , 1968 .

[516]  J. Hartle,et al.  Slowly Rotating Relativistic Stars. II. Models for Neutron Stars and Supermassive Stars , 1968 .

[517]  F. J. Ernst NEW FORMULATION OF THE AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM. II. , 1968 .

[518]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[519]  J. Hartle Slowly Rotating Relativistic Stars. I. Equations of Structure , 1967 .

[520]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[521]  R. Kerr,et al.  Gravitational field of a spinning mass as an example of algebraically special metrics , 1963 .

[522]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[523]  J. Swihart,et al.  Phenomenological linear theory of gravitation: Part III: Interaction with the spinning electron , 1957 .

[524]  J. Swihart,et al.  Phenomenological linear theory of gravitation: Part I. Classical mechanics , 1957 .

[525]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[526]  H. Goldstein,et al.  Classical Mechanics , 1951, Mathematical Gazette.

[527]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[528]  W. Pauli,et al.  On relativistic wave equations for particles of arbitrary spin in an electromagnetic field , 1939 .

[529]  J. Oppenheimer,et al.  On Continued Gravitational Contraction , 1939 .

[530]  W. Pauli,et al.  On Relativistic Field Equations of Particles With Arbitrary Spin in an Electromagnetic Field , 1939 .

[531]  Markus Fierz,et al.  Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin , 1939 .

[532]  W. Jadassohn,et al.  Zum Problem der Anaphylaxie mit chemisch bekannten Substanzen , 1939 .

[533]  K. Schwarzschild “Golden Oldie”: On the Gravitational Field of a Mass Point According to Einstein's Theory , 1999, physics/9905030.

[534]  K. Schwarzschild Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie , 1916 .

[535]  A. G. A Theory of Gravitation , 1891, Nature.