Parameterizing above or below guaranteed values

We consider new parameterizations of NP-optimization problems that have nontrivial lower and/or upper bounds on their optimum solution size. The natural parameter, we argue, is the quantity above the lower bound or below the upper bound. We show that for every problem in MAX SNP, the optimum value is bounded below by an unbounded function of the input-size, and that the above-guarantee parameterization with respect to this lower bound is fixed-parameter tractable. We also observe that approximation algorithms give nontrivial lower or upper bounds on the solution size and that the above or below guarantee question with respect to these bounds is fixed-parameter tractable for a subclass of NP-optimization problems. We then introduce the notion of 'tight' lower and upper bounds and exhibit a number of problems for which the above-guarantee and below-guarantee parameterizations with respect to a tight bound is fixed-parameter tractable or W-hard. We show that if we parameterize ''sufficiently'' above or below the tight bounds, then these parameterized versions are not fixed-parameter tractable unless P=NP, for a subclass of NP-optimization problems. We also list several directions to explore in this paradigm.

[1]  Saket Saurabh,et al.  The Complexity of Finding Subgraphs Whose Matching Number Equals the Vertex Cover Number , 2007, ISAAC.

[2]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[3]  Rolf Niedermeier,et al.  Fixed-Parameter Algorithms for Kemeny Scores , 2008, AAIM.

[4]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, Algorithmica.

[5]  Meena Mahajan,et al.  Parameterizing MAX SNP Problems Above Guaranteed Values , 2006, IWPEC.

[6]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[7]  Rajeev Motwani,et al.  On syntactic versus computational views of approximability , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Stefan Szeider,et al.  Fixed-Parameter Complexity of Minimum Profile Problems , 2007, Algorithmica.

[9]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[10]  Pinar Heggernes,et al.  Interval completion with few edges , 2007, STOC '07.

[11]  Michael Randolph Garey,et al.  Johnson: "computers and intractability , 1979 .

[12]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[13]  Barry O'Sullivan,et al.  Almost 2-SAT Is Fixed-Parameter Tractable (Extended Abstract) , 2008, ICALP.

[14]  Liming Cai,et al.  On Fixed-Parameter Tractability and Approximability of NP Optimization Problems , 1997, J. Comput. Syst. Sci..

[15]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[16]  Roded Sharan,et al.  Complexity classification of some edge modification problems , 1999, Discret. Appl. Math..

[17]  S. Poljak,et al.  A Polynomial Algorithm for Constructing a Large Bipartite Subgraph, with an Application to a Satisfiability Problem , 1982, Canadian Journal of Mathematics.

[18]  Michael R. Fellows,et al.  Parameterized Approximation Problems , 2006, IWPEC.

[19]  Michel X. Goemans Bounded-degree minimum spanning trees , 2006 .

[20]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, STOC.

[21]  Joseph Naor,et al.  Approximating Minimum Feedback Sets and Multicuts in Directed Graphs , 1998, Algorithmica.

[22]  Daniel Lokshtanov,et al.  Wheel-Free Deletion Is W[2]-Hard , 2008, IWPEC.

[23]  David P. Williamson,et al.  .879-approximation algorithms for MAX CUT and MAX 2SAT , 1994, STOC '94.

[24]  Robert W. Deming,et al.  Independence numbers of graphs-an extension of the Koenig-Egervary theorem , 1979, Discret. Math..

[25]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[26]  Paul D. Seymour,et al.  Recognizing Berge Graphs , 2005, Comb..

[27]  Rolf Niedermeier,et al.  New Upper Bounds for Maximum Satisfiability , 2000, J. Algorithms.

[28]  Jinjiang Yuan,et al.  Profile minimization problem for matrices and graphs , 1994 .

[29]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[30]  Henning Fernau,et al.  Parameterized Approximation Algorithms for Hitting Set , 2011, WAOA.

[31]  Joseph Cheriyan,et al.  Approximating minimum-size k-connected spanning subgraphs via matching , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[32]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[33]  Liming Cai,et al.  Fixed-Parameter Approximation: Conceptual Framework and Approximability Results , 2006, IWPEC.

[34]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.

[35]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[36]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[37]  Yijia Chen,et al.  On Parameterized Approximability , 2006, IWPEC.

[38]  Yuan Jinjiang,et al.  Profile minimization problem for matrices and graphs , 1994 .

[39]  Stefan Szeider,et al.  The Linear Arrangement Problem Parameterized Above Guaranteed Value , 2007, Theory of Computing Systems.

[40]  Michel X. Goemans,et al.  Minimum Bounded Degree Spanning Trees , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[41]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[42]  Srinivasan Venkatesh,et al.  On the advantage over a random assignment , 2002, STOC '02.

[43]  Alain Billionnet,et al.  On interval graphs and matrice profiles , 1986 .

[44]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[45]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.