Modeling phase equilibria and speciation in mixed-solvent electrolyte systems

[1]  Andrzej Anderko,et al.  A speciation-based model for mixed-solvent electrolyte systems , 2002 .

[2]  Marshall Rafal,et al.  Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes , 2002 .

[3]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[4]  Andrzej Anderko,et al.  Computation of dielectric constants of solvent mixtures and electrolyte solutions , 2001 .

[5]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[6]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[7]  M. Donohue,et al.  Recent Advances in Modeling Thermodynamic Properties of Aqueous Strong Electrolyte Systems , 1997 .

[8]  K. Pitzer,et al.  Thermodynamics of aqueous KOH over the full range to saturation and to 573 K , 1996 .

[9]  K. Pitzer,et al.  Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K , 1993 .

[10]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[11]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[12]  C. E. Hall,et al.  The system dipotassium hydrogen phosphate-water at high temperatures (100–400°C); Liquid-liquid immiscibility and concentrated solutions , 1981 .

[13]  Kenneth S. Pitzer,et al.  ELECTROLYTES: FROM DILUTE SOLUTIONS TO FUSED SALTS , 1980 .

[14]  H. Helgeson,et al.  Theoretical prediction of thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution , 1976 .

[15]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[16]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures , 1974 .

[17]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent , 1974 .

[18]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[19]  D. I. MacDonald,et al.  Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid , 1969 .

[20]  G. Brunisholz,et al.  Contribution à l'étude du système quinaire H+Na+K+Cl−PO4− − −H2O. I. Généralités et systèmes ternaires NaClKClH2O, KClKH2PO4H2O, NaClNaH2PO4 H2O et NaH2PO4KH2PO4H2O , 1963 .

[21]  H. Stephen,et al.  Solubilities of inorganic and organic compounds , 1963 .

[22]  O. Haehnel Über die Löslichkeit des Lithiumcarbonates in kohlensäurehaltigem Wasser unter hohen Kohlendioxyddrucken und über die Eigenschaften solcher Lösungen , 1937 .

[23]  I. Kablukov,et al.  Die Dampfspannungen der Phosphorsäurelösungen , 1935 .

[24]  W. Ross,et al.  THE SOLUBILITY AND FREEZING-POINT CURVES OF HYDRATED AND ANHYDROUS ORTHOPHOSPHORIC ACID , 1925 .

[25]  Alexander Smith,et al.  THE SOLUBILITIES OF ORTHOPHOSPHORIC ACID AND ITS HYDRATES. A NEW HYDRATE. , 1909 .

[26]  S. Pickering X.—The hydrate theory of solutions. Some compounds of the alkyl-amines and ammonia with water , 1893 .