Lie Algebra and the Mobility of Kinematic Chains
暂无分享,去创建一个
Jaime Gallardo-Alvarado | José María Rico Martínez | Bahran Ravani | J. Rico | J. Gallardo-Alvarado | B. Ravani
[1] Janusz,et al. Geometrical Methods in Robotics , 1996, Monographs in Computer Science.
[2] C. Galletti,et al. Metric Relations and Displacement Groups in Mechanism and Robot Kinematics , 1995 .
[3] J. Hervé. Analyse structurelle des mcanismes par groupe des dplacements , 1978 .
[4] DB Marghitu,et al. Analytical Elements of Mechanisms , 2001 .
[5] K. H. Hunt. Prismatic pairs in spatial linkages , 1967 .
[6] C. Galletti,et al. Mobility analysis of single-loop kinematic chains: an algorithmic approach based on displacement groups , 1994 .
[7] K. H. Hunt,et al. Geometry of screw systems1Screws: Genesis and geometry , 1990 .
[8] Richard M. Murray,et al. A Mathematical Introduction to Robotic Manipulation , 1994 .
[9] Joseph Duffy,et al. Classification of screw systems—II. Three-systems , 1992 .
[10] K. H. Hunt,et al. Geometry of screw systems—2: classification of screw systems , 1990 .
[11] Joseph Duffy,et al. Orthogonal spaces and screw systems , 1992 .
[12] Ferdinand Freudenstein. On the Variety of Motions Generated by Mechanisms , 1962 .
[13] K. H. Hunt,et al. Kinematic geometry of mechanisms , 1978 .
[14] J. Angeles,et al. DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE , 1988 .
[15] Kenneth J. Waldron. A study of overconstrained linkage geometry by solution of closure equations — Part 1. Method of study , 1973 .
[16] Pietro Fanghella,et al. Kinematics of spatial linkages by group algebra: A structure-based approach , 1988 .
[17] Joseph Duffy,et al. Classification of screw systems—I. One- and two-systems , 1992 .
[18] C. Galletti,et al. Single-loop kinematotropic mechanisms , 2001 .
[19] E. Kuznetsov. Underconstrained structural systems , 1991 .