The biology of chromatin remodeling complexes.

The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.

[1]  Paul Tempst,et al.  WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase , 2009 .

[2]  D. Corona,et al.  The Nucleosome-Remodeling ATPase ISWI Is Regulated by Poly-ADP-Ribosylation , 2008, PLoS biology.

[3]  S. D. Rider,et al.  The CHD3 Remodeler PICKLE Promotes Trimethylation of Histone H3 Lysine 27* , 2008, Journal of Biological Chemistry.

[4]  C. Peterson,et al.  Architecture of the SWI/SNF-Nucleosome Complex , 2008, Molecular and Cellular Biology.

[5]  R. Kingston,et al.  Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits. , 2008, Biochemistry.

[6]  S. V. van Heeringen,et al.  Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI , 2008, PLoS genetics.

[7]  Roger D. Kornberg,et al.  Nucleosome Retention and the Stochastic Nature of Promoter Chromatin Remodeling for Transcription , 2008, Cell.

[8]  R. Tjian,et al.  ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a , 2008, Proceedings of the National Academy of Sciences.

[9]  Jiangwen Zhang,et al.  The role of the chromatin remodeler Mi-2beta in hematopoietic stem cell self-renewal and multilineage differentiation. , 2008, Genes & development.

[10]  H. Szerlong,et al.  The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases , 2008, Nature Structural &Molecular Biology.

[11]  T. Tsukiyama,et al.  ATP-dependent chromatin remodeling shapes the DNA replication landscape , 2008, Nature Structural &Molecular Biology.

[12]  S. Gasser,et al.  Ino80 Chromatin Remodeling Complex Promotes Recovery of Stalled Replication Forks , 2008, Current Biology.

[13]  R. Tjian,et al.  The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. , 2008, Developmental biology.

[14]  G. Narlikar,et al.  ATP-dependent chromatin remodeling enzymes: two heads are not better, just different. , 2008, Current opinion in genetics & development.

[15]  Brandi A. Thompson,et al.  CHD8 Is an ATP-Dependent Chromatin Remodeling Factor That Regulates β-Catenin Target Genes , 2008, Molecular and Cellular Biology.

[16]  C. Peterson,et al.  The Ino80 chromatin-remodeling enzyme regulates replisome function and stability , 2008, Nature Structural &Molecular Biology.

[17]  D. Rhodes,et al.  ACF catalyses chromatosome movements in chromatin fibres , 2008, The EMBO journal.

[18]  Colin Logie,et al.  dCHD3, a Novel ATP-Dependent Chromatin Remodeler Associated with Sites of Active Transcription , 2008, Molecular and Cellular Biology.

[19]  D. Stillman,et al.  A Role for Chd1 and Set2 in Negatively Regulating DNA Replication in Saccharomyces cerevisiae , 2008, Genetics.

[20]  Takashi Yamamoto,et al.  RSF Governs Silent Chromatin Formation via Histone H2Av Replacement , 2008, PLoS genetics.

[21]  B. Cairns,et al.  RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes , 2008, The EMBO journal.

[22]  K. Muegge,et al.  Association of ATRX with pericentric heterochromatin and the Y chromosome of neonatal mouse spermatogonia , 2008, BMC Molecular Biology.

[23]  Thomas Walz,et al.  Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. , 2007, Molecular cell.

[24]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[25]  T. Owen-Hughes,et al.  Histone Modifications Influence the Action of Snf2 Family Remodelling Enzymes by Different Mechanisms , 2007, Journal of molecular biology.

[26]  Yang Shi,et al.  A YY1–INO80 complex regulates genomic stability through homologous recombination–based repair , 2007, Nature Structural &Molecular Biology.

[27]  B. Cairns,et al.  Chromatin remodeling: insights and intrigue from single-molecule studies , 2007, Nature Structural &Molecular Biology.

[28]  I. Graef,et al.  Regulation of Dendritic Development by Neuron-Specific Chromatin Remodeling Complexes , 2007, Neuron.

[29]  B. Bartholomew,et al.  Domain Architecture of the Catalytic Subunit in the ISW2-Nucleosome Complex , 2007, Molecular and Cellular Biology.

[30]  S. Gasser,et al.  Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double‐strand breaks , 2007, The EMBO journal.

[31]  B. Cairns,et al.  Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. , 2007, Molecular cell.

[32]  C. Allis,et al.  Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling. , 2007, Trends in molecular medicine.

[33]  T. Bonaldi,et al.  Site-specific acetylation of ISWI by GCN5 , 2007, BMC Molecular Biology.

[34]  M. Scott,et al.  ISWI Regulates Higher-Order Chromatin Structure and Histone H1 Assembly In Vivo , 2007, PLoS biology.

[35]  M. Washburn,et al.  YY1 functions with INO80 to activate transcription , 2007, Nature Structural &Molecular Biology.

[36]  V. Pirrotta,et al.  CHD1 Motor Protein Is Required for Deposition of Histone Variant H3.3 into Chromatin in Vivo , 2007, Science.

[37]  S. Denslow,et al.  The human Mi-2/NuRD complex and gene regulation , 2007, Oncogene.

[38]  S. Rea,et al.  Males absent on the first (MOF): from flies to humans , 2007, Oncogene.

[39]  N. Krogan,et al.  Mec1/Tel1 Phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA Damage Checkpoint Responses , 2007, Cell.

[40]  Georgios Skiniotis,et al.  Acetylated Histone Tail Peptides Induce Structural Rearrangements in the RSC Chromatin Remodeling Complex* , 2007, Journal of Biological Chemistry.

[41]  R. Aebersold,et al.  An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development , 2007, Neuron.

[42]  B. Bartholomew,et al.  The Dpb4 Subunit of ISW2 Is Anchored to Extranucleosomal DNA* , 2007, Journal of Biological Chemistry.

[43]  C. Gustafsson,et al.  A genome‐wide role for CHD remodelling factors and Nap1 in nucleosome disassembly , 2007, The EMBO journal.

[44]  Ashby J. Morrison,et al.  Regulation of Telomere Structure and Functions by Subunits of the INO80 Chromatin Remodeling Complex , 2007, Molecular and Cellular Biology.

[45]  Miguel Beato,et al.  Swi3p controls SWI/SNF assembly and ATP-dependent H2A-H2B displacement , 2007, Nature Structural &Molecular Biology.

[46]  Xuetong Shen,et al.  SnapShot: Chromatin Remodeling Complexes , 2007, Cell.

[47]  Xuetong Shen,et al.  INO80 subfamily of chromatin remodeling complexes. , 2007, Mutation research.

[48]  A. Jerzmanowski,et al.  SWI/SNF chromatin remodeling and linker histones in plants. , 2007, Biochimica et biophysica acta.

[49]  A. Imbalzano,et al.  The Chd family of chromatin remodelers. , 2007, Mutation research.

[50]  E. Kremmer,et al.  CHD4/Mi-2beta activity is required for the positioning of the mesoderm/neuroectoderm boundary in Xenopus. , 2007, Genes & development.

[51]  Andres E Leschziner,et al.  Conformational flexibility in the chromatin remodeler RSC observed by electron microscopy and the orthogonal tilt reconstruction method , 2007, Proceedings of the National Academy of Sciences.

[52]  H. Vogel,et al.  CHD5 Is a Tumor Suppressor at Human 1p36 , 2007, Cell.

[53]  T. Sugiyama,et al.  SHREC, an Effector Complex for Heterochromatic Transcriptional Silencing , 2007, Cell.

[54]  Yu Zhang,et al.  RSC Mobilizes Nucleosomes To Improve Accessibility of Repair Machinery to the Damaged Chromatin , 2006, Molecular and Cellular Biology.

[55]  G. Längst,et al.  NoRC‐dependent nucleosome positioning silences rRNA genes , 2006, The EMBO journal.

[56]  Carlos Bustamante,et al.  DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. , 2006, Molecular cell.

[57]  G. Narlikar,et al.  The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing , 2006, Nature Structural &Molecular Biology.

[58]  J. Workman,et al.  RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. , 2006, Molecular cell.

[59]  R. Kingston,et al.  Human ACF1 Alters the Remodeling Strategy of SNF2h* , 2006, Journal of Biological Chemistry.

[60]  M. Nakao,et al.  CTCF-dependent chromatin insulator is linked to epigenetic remodeling. , 2006, Molecular cell.

[61]  C. Peterson,et al.  Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. , 2006, Genes & development.

[62]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[63]  Thomas A. Milne,et al.  A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling , 2006, Nature.

[64]  Toshio Tsukiyama,et al.  Antagonistic forces that position nucleosomes in vivo , 2006, Nature Structural &Molecular Biology.

[65]  Bradley R. Cairns,et al.  Chromatin remodelling: the industrial revolution of DNA around histones , 2006, Nature Reviews Molecular Cell Biology.

[66]  Geoffrey J. Barton,et al.  Identification of multiple distinct Snf2 subfamilies with conserved structural motifs , 2006, Nucleic acids research.

[67]  R. Benarous,et al.  Requirement for SWI/SNF chromatin‐remodeling complex in Tat‐mediated activation of the HIV‐1 promoter , 2006, The EMBO journal.

[68]  G. Almouzni,et al.  Chromatin assembly: a basic recipe with various flavours. , 2006, Current opinion in genetics & development.

[69]  P. Becker,et al.  Regulation of higher-order chromatin structures by nucleosome-remodelling factors. , 2006, Current opinion in genetics & development.

[70]  M. Zofall,et al.  Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome , 2006, Nature Structural &Molecular Biology.

[71]  J. Nichols,et al.  The NuRD component Mbd3 is required for pluripotency of embryonic stem cells , 2006, Nature Cell Biology.

[72]  B. Maier-Davis,et al.  Chromatin remodeling by nucleosome disassembly in vitro. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  M. Pazin,et al.  Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions , 2006, Science.

[74]  D. Dunlap,et al.  Direct observation of DNA distortion by the RSC complex. , 2006, Molecular cell.

[75]  S. Smale,et al.  Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. , 2006, Genes & development.

[76]  R. Roeder,et al.  Mechanism of Polymerase II Transcription Repression by the Histone Variant macroH2A , 2006, Molecular and Cellular Biology.

[77]  Danny Reinberg,et al.  Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains* , 2005, Journal of Biological Chemistry.

[78]  A. Brehm,et al.  dMi-2 Chromatin Binding and Remodeling Activities Are Regulated by dCK2 Phosphorylation* , 2005, Journal of Biological Chemistry.

[79]  S. Khorasanizadeh,et al.  Double chromodomains cooperate to recognize the methylated histone H3 tail , 2005, Nature.

[80]  C. Müller,et al.  The Histone Fold Subunits of Drosophila CHRAC Facilitate Nucleosome Sliding through Dynamic DNA Interactions , 2005, Molecular and Cellular Biology.

[81]  S. Schreiber,et al.  Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin , 2005, Cell.

[82]  B. Cairns,et al.  Genome-Wide Dynamics of Htz1, a Histone H2A Variant that Poises Repressed/Basal Promoters for Activation through Histone Loss , 2005, Cell.

[83]  I. Grummt,et al.  The PHD Finger/Bromodomain of NoRC Interacts with Acetylated Histone H4K16 and Is Sufficient for rDNA Silencing , 2005, Current Biology.

[84]  K. Rippe,et al.  A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling , 2005, Nature Structural &Molecular Biology.

[85]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[86]  B. Cairns,et al.  Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. , 2005, Genes & development.

[87]  Kairong Cui,et al.  PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes. , 2005, Genes & development.

[88]  P. Bjerling,et al.  The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres , 2005, Nucleic acids research.

[89]  S. Tapscott,et al.  MyoD Targets Chromatin Remodeling Complexes to the Myogenin Locus Prior to Forming a Stable DNA-Bound Complex , 2005, Molecular and Cellular Biology.

[90]  Y. Kaneda,et al.  Linker histone variants control chromatin dynamics during early embryogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[91]  R. Shiekhattar,et al.  Cell cycle regulation of chromatin at an origin of DNA replication , 2005, The EMBO journal.

[92]  J. Tamkun,et al.  The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II , 2005, Development.

[93]  John R. Yates,et al.  Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation , 2005, Nature.

[94]  Karel Koberna,et al.  The chromatin remodeling complex NoRC controls replication timing of rRNA genes , 2005, The EMBO journal.

[95]  C. Verrijzer,et al.  Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. , 2005, Biochimica et biophysica acta.

[96]  J. T. Kadonaga,et al.  Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly , 2005, Nature Structural &Molecular Biology.

[97]  S. Jackson,et al.  Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. , 2004, Molecular cell.

[98]  John R Yates,et al.  Acetylation by Tip60 Is Required for Selective Histone Variant Exchange at DNA Lesions , 2004, Science.

[99]  N. Krogan,et al.  INO80 and γ-H2AX Interaction Links ATP-Dependent Chromatin Remodeling to DNA Damage Repair , 2004, Cell.

[100]  Barbara Hohn,et al.  Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-Dependent Chromatin Remodeling with DNA Double-Strand Break Repair , 2004, Cell.

[101]  Raymond A. Poot,et al.  The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci , 2004, Nature Cell Biology.

[102]  Kevin Struhl,et al.  Evidence for Eviction and Rapid Deposition of Histones upon Transcriptional Elongation by RNA Polymerase II , 2004, Molecular and Cellular Biology.

[103]  Anindya Dutta,et al.  Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. , 2004, Molecular cell.

[104]  I. Vetter,et al.  ACF1 improves the effectiveness of nucleosome mobilization by ISWI through PHD–histone contacts , 2004, The EMBO journal.

[105]  David L. Jaye,et al.  MTA3 and the Mi-2/NuRD Complex Regulate Cell Fate during B Lymphocyte Differentiation , 2004, Cell.

[106]  Imre Berger,et al.  Reaction cycle of the yeast Isw2 chromatin remodeling complex , 2004, The EMBO journal.

[107]  Hua Xiao,et al.  Spatial Contacts and Nucleosome Step Movements Induced by the NURF Chromatin Remodeling Complex* , 2004, Journal of Biological Chemistry.

[108]  Han G Brunner,et al.  Mutations in a new member of the chromodomain gene family cause CHARGE syndrome , 2004, Nature Genetics.

[109]  K. Wigglesworth,et al.  ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase II stage mouse oocytes. , 2004, Developmental biology.

[110]  Jian Huang,et al.  A Role for the RSC Chromatin Remodeler in Regulating Cohesion of Sister Chromatid Arms , 2004, Cell cycle.

[111]  M. Zofall,et al.  Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling , 2004, The EMBO journal.

[112]  G. Hager,et al.  Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. , 2004, Molecular cell.

[113]  T. Tsukiyama,et al.  Histone Fold Protein Dls1p Is Required for Isw2-Dependent Chromatin Remodeling In Vivo , 2004, Molecular and Cellular Biology.

[114]  H. Szerlong,et al.  Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14 , 2004, The EMBO journal.

[115]  Andrew J Link,et al.  A Protein Complex Containing the Conserved Swi2/Snf2-Related ATPase Swr1p Deposits Histone Variant H2A.Z into Euchromatin , 2004, PLoS biology.

[116]  J. Tamkun,et al.  Multiple roles for ISWI in transcription, chromosome organization and DNA replication. , 2004, Biochimica et biophysica acta.

[117]  G. Längst,et al.  Recruitment of the Nucleolar Remodeling Complex NoRC Establishes Ribosomal DNA Silencing in Chromatin , 2004, Molecular and Cellular Biology.

[118]  Rein Aasland,et al.  The many colours of chromodomains. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[119]  Stuart H. Orkin,et al.  The SWI/SNF complex — chromatin and cancer , 2004, Nature Reviews Cancer.

[120]  C. Peterson,et al.  The SANT domain: a unique histone-tail-binding module? , 2004, Nature Reviews Molecular Cell Biology.

[121]  S. Elderkin,et al.  The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF. , 2004, Molecular cell.

[122]  S. Khorasanizadeh The Nucleosome From Genomic Organization to Genomic Regulation , 2004, Cell.

[123]  Wei-Hua Wu,et al.  ATP-Driven Exchange of Histone H2AZ Variant Catalyzed by SWR1 Chromatin Remodeling Complex , 2004, Science.

[124]  G. Karpen,et al.  Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. , 2004, Genes & development.

[125]  M. Yaniv,et al.  Growth inhibition by the mammalian SWI–SNF subunit Brm is regulated by acetylation , 2003, The EMBO journal.

[126]  Huiming Ding,et al.  A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. , 2003, Molecular cell.

[127]  Andrew Flaus,et al.  Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. , 2003, Molecular cell.

[128]  Nicholas Proudfoot,et al.  Isw1 Chromatin Remodeling ATPase Coordinates Transcription Elongation and Termination by RNA Polymerase II , 2003, Cell.

[129]  J. Qin,et al.  The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Weidong Wang,et al.  BAF60a Mediates Critical Interactions between Nuclear Receptors and the BRG1 Chromatin-Remodeling Complex for Transactivation , 2003, Molecular and Cellular Biology.

[131]  C. Müller,et al.  Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. , 2003, Molecular cell.

[132]  Carl Wu,et al.  Involvement of actin-related proteins in ATP-dependent chromatin remodeling. , 2003, Molecular cell.

[133]  Hiromichi Nagasawa,et al.  RETRACTED: The Chromatin-Remodeling Complex WINAC Targets a Nuclear Receptor to Promoters and Is Impaired in Williams Syndrome , 2003, Cell.

[134]  H. Szerlong,et al.  The nuclear actin‐related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling , 2003, The EMBO journal.

[135]  Toshio Tsukiyama,et al.  Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. , 2003, Molecular cell.

[136]  H. Reinke,et al.  Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. , 2003, Molecular cell.

[137]  J Seth Strattan,et al.  Nucleosomes unfold completely at a transcriptionally active promoter. , 2003, Molecular cell.

[138]  P. Meluh,et al.  The Yeast RSC Chromatin-Remodeling Complex Is Required for Kinetochore Function in Chromosome Segregation , 2003, Molecular and Cellular Biology.

[139]  Carlos S. Moreno,et al.  MTA3, a Mi-2/NuRD Complex Subunit, Regulates an Invasive Growth Pathway in Breast Cancer , 2003, Cell.

[140]  Hien G. Tran,et al.  Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes , 2003, The EMBO journal.

[141]  T. Richmond,et al.  Chromatin fiber folding: requirement for the histone H4 N-terminal tail. , 2003, Journal of molecular biology.

[142]  P. Badenhorst,et al.  Biological functions of the ISWI chromatin remodeling complex NURF. , 2002, Genes & development.

[143]  S. Henikoff,et al.  Histone H3 variants specify modes of chromatin assembly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[144]  N. Proudfoot,et al.  A role for chromatin remodeling in transcriptional termination by RNA polymerase II. , 2002, Molecular cell.

[145]  R. Tjian,et al.  TRF2 associates with DREF and directs promoter-selective gene expression in Drosophila , 2002, Nature.

[146]  R. Poot,et al.  An ACF1–ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin , 2002, Nature Genetics.

[147]  J. Workman,et al.  Function and Selectivity of Bromodomains in Anchoring Chromatin-Modifying Complexes to Promoter Nucleosomes , 2002, Cell.

[148]  T. Kohwi-Shigematsu,et al.  SATB1 targets chromatin remodelling to regulate genes over long distances , 2002, Nature.

[149]  Francisco J. Asturias,et al.  Structural analysis of the RSC chromatin-remodeling complex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[150]  C. Peterson,et al.  Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. , 2002, Molecular cell.

[151]  M. Scott,et al.  The Drosophila BRM complex facilitates global transcription by RNA polymerase II , 2002, The EMBO journal.

[152]  R. Shiekhattar,et al.  A chromatin remodelling complex that loads cohesin onto human chromosomes , 2002, Nature.

[153]  Anjanabha Saha,et al.  Chromatin remodeling by RSC involves ATP-dependent DNA translocation. , 2002, Genes & development.

[154]  J. Simon,et al.  Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. , 2002, Current opinion in genetics & development.

[155]  C. Peterson,et al.  Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes , 2002, Nature Structural Biology.

[156]  P. Janmey,et al.  Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[157]  H. Erdjument-Bromage,et al.  A Rad26–Def1 complex coordinates repair and RNA pol II proteolysis in response to DNA damage , 2002, Nature.

[158]  K. Nightingale,et al.  A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. , 2002, Nucleic acids research.

[159]  W. Hörz,et al.  ATP-dependent nucleosome remodeling. , 2002, Annual review of biochemistry.

[160]  Carl Wu,et al.  Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[161]  H. Xiao,et al.  Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. , 2001, Molecular cell.

[162]  G. Längst,et al.  Critical Role for the Histone H4 N Terminus in Nucleosome Remodeling by ISWI , 2001, Molecular and Cellular Biology.

[163]  A. Imbalzano,et al.  Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation , 2001, Nature Genetics.

[164]  George M Church,et al.  The Isw2 Chromatin Remodeling Complex Represses Early Meiotic Genes upon Recruitment by Ume6p , 2000, Cell.

[165]  R. Kingston,et al.  ATP-Dependent Chromatin Remodeling by the Cockayne Syndrome B DNA Repair-Transcription-Coupling Factor , 2000, Molecular and Cellular Biology.

[166]  A. Imbalzano,et al.  Human SWI/SNF nucleosome remodeling activity is partially inhibited by linker histone H1. , 2000, Biochemistry.

[167]  Ali Hamiche,et al.  A chromatin remodelling complex involved in transcription and DNA processing , 2000, Nature.

[168]  Carl Wu,et al.  The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. , 2000, Molecular cell.

[169]  K. Natarajan,et al.  Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. , 1999, Molecular cell.

[170]  C Logie,et al.  Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. , 1999, Genes & development.

[171]  M. Osley,et al.  A role for transcriptional repressors in targeting the yeast Swi/Snf complex. , 1999, Molecular cell.

[172]  C. Peterson,et al.  A role for the yeast SWI/SNF complex in DNA replication. , 1999, Nucleic acids research.

[173]  K. Nasmyth,et al.  Ordered Recruitment of Transcription and Chromatin Remodeling Factors to a Cell Cycle– and Developmentally Regulated Promoter , 2016, Cell.

[174]  J. Kennison,et al.  dMi-2, a hunchback-interacting protein that functions in polycomb repression. , 1998, Science.

[175]  Keji Zhao,et al.  Rapid and Phosphoinositol-Dependent Binding of the SWI/SNF-like BAF Complex to Chromatin after T Lymphocyte Receptor Signaling , 1998, Cell.

[176]  B. Cairns,et al.  Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. , 1998, Molecular cell.

[177]  M. Kirschner,et al.  Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. , 1998, Genes & development.

[178]  Olivier Delattre,et al.  Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer , 1998, Nature.

[179]  M. Yaniv,et al.  The hbrm and BRG‐1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. , 1996, The EMBO journal.

[180]  Steven A. Brown,et al.  Activator-dependent regulation of transcriptional pausing on nucleosomal templates. , 1996, Genes & development.

[181]  Michael R. Green,et al.  Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex , 1994, Nature.

[182]  R. Simpson Nucleosome positioning can affect the function of a cis-acting DMA elementin vivo , 1990, Nature.

[183]  R. Kornberg Chromatin structure: a repeating unit of histones and DNA. , 1974, Science.

[184]  Anindya Dutta,et al.  Supplemental Data Rvb 1 p / Rvb 2 p Recruit Arp 5 p and Assemble a Functional Ino 80 Chromatin Remodeling Complex , 2022 .