Global General Relativity
暂无分享,去创建一个
Much of the theoretical work that has been carried out in General Relativity, particularly in the earlier years of the subject, has been concerned with finding explicit solutions of Einstein’s field equations, either in the vacuum case or, with suitable equations of state, when matter is present. These have been very useful in giving us some sort of feeling for the nature of more general ‘ physically reasonable ’ solutions, but they can, at best, only be rough approximations to such solutions. Exact solutions must, owing to the limitations of human energy and ingenuity, and to the complexity of Einstein’s equations, involve a number of simplifying assumptions, such as special symmetries or particular algebraic forms for the metric or curvature. Sometimes it is legitimate to regard such a special solution as the first term in some perturbation expansion towards something more realistic. But in the highly nonlinear situations of strong gravitational fields, such as in gravitational collapse to a black hole, or perhaps also in cosmology, it is often not clear when the results of such perturbation calculations (themselves often very complicated) can be trusted. High-speed computers can come to our aid (Smarr 1979, this symposium), of course, and can often give important insights in particular situations. But complementary to these are the global qualitative mathematical techniques that have been introduced into relativity over the past several years (Hawking & Ellis 1973; Penrose 1972).
[1] R. Penrose. Techniques of Differential Topology in Relativity , 1972 .
[2] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .