PROBABILITY‐ONE HOMOTOPY ALGORITHMS FOR ROBUST CONTROLLER SYNTHESIS WITH FIXED‐STRUCTURE MULTIPLIERS

SUMMARY Continuation algorithms that avoid multiplier{controller iteration have been developed earlier for xedarchitecture, mixed structured singular value controller synthesis. These algorithms have only been formulated for the special case of Popov multipliers and rely on an ad hoc initialization scheme. In addition, the algorithms have not used the prediction capabilities obtained by computing the Jacobian matrix of the continuation (or homotopy) map, and have assumed that the homotopy zero curve is monotonic. This paper develops probability-one homotopy algorithms based on the use of general xed-structure multipliers. These algorithms can be initialized using an arbitrary (admissible) multiplier and a stabilizing compensator. In addition, as with all probability-one algorithms, the homotopy zero curve is not assumed to be monotonic and prediction is accomplished by using the homotopy Jacobian matrix. This approach also appears to have some advantages over the bilinear matrix inequality (BMI) approaches resulting from extensions of the LMI framework for robustness analysis.

[1]  Maciejowsk Multivariable Feedback Design , 1989 .

[2]  E. Collins,et al.  Structured singular value controller synthesis using constant D-scales without D-K iteration , 1996 .

[3]  C. Jacobson,et al.  A connection between state-space and doubly coprime fractional representations , 1984 .

[4]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[5]  D. Bernstein,et al.  Explicit construction of quadratic lyapunov functions for the small gain, positivity, circle, and popov theorems and their application to robust stability. part II: Discrete-time theory , 1993 .

[6]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[7]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[8]  Dennis S. Bernstein,et al.  Generalized mixed-μ bounds for real and complex multiple-block uncertainty with internal matrix structure , 1995 .

[9]  J. How,et al.  Applications of Popov controller synthesis to benchmark problems with real parameter uncertainty , 1994 .

[10]  R. Y. Chiang,et al.  Real Km-Synthesis via Generalized Popov Multipliers , 1992, 1992 American Control Conference.

[11]  Peter M. Young,et al.  Robustness with parametric and dynamic uncertainty , 1993 .

[12]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[13]  K. Goh,et al.  Control system synthesis via bilinear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[14]  Jonathan P. How,et al.  Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis , 1993 .

[15]  E. Collins,et al.  Complex structured singular value analysis using fixed-structure dynamic D-scales , 1996 .

[16]  J. P. Chretien,et al.  μ synthesis by D - K iterations with constant scaling , 1993, 1993 American Control Conference.

[17]  Michael G. Safonov,et al.  Stability and Robustness of Multivariable Feedback Systems , 1980 .

[18]  K. Goh,et al.  /spl mu//K/sub m/-synthesis via bilinear matrix inequalities , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[19]  M. Athans,et al.  A multiloop generalization of the circle criterion for stability margin analysis , 1981 .

[20]  Emmanuel G. Collins,et al.  Design of Reduced-Order, H2 Optimal Controllers Using a Homotopy Algorithm , 1993, 1993 American Control Conference.

[21]  K. Goh,et al.  Robust synthesis via bilinear matrix inequalities , 1996 .

[22]  M. Safonov,et al.  Real/complex multivariable stability margin computation via generalized Popov multiplier-LMI approach , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[23]  Jonathan P. How,et al.  Optimal Popov controller analysis and synthesis for systems with real parameter uncertainties , 1995 .

[24]  Dennis S. Bernstein,et al.  Benchmark Problems for Robust Control Design , 1991, 1991 American Control Conference.

[25]  Jonathan P. How,et al.  Optimal Popov controller analysis and synthesis for systems with real parameter uncertainties , 1996, IEEE Trans. Control. Syst. Technol..

[26]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[27]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[28]  L. Watson Numerical linear algebra aspects of globally convergent homotopy methods , 1986 .

[29]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions, constant real parameter uncertainty, and the Popov criterion in robust analysis and synthesis. 2 , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[30]  E. Collins,et al.  Riccati Equation Approaches for Small Gain, Positivity, and Popov Robustness Analysis , 1994 .

[31]  D. S. Bernstein,et al.  Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their application to robust stability , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[32]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[33]  Austin Blaquière,et al.  Nonlinear System Analysis , 1966 .

[34]  D. Bernstein,et al.  Parameter-dependent Lyapunov functions and the Popov criterion in robust analysis and synthesis , 1995, IEEE Trans. Autom. Control..

[35]  J. Perkins Multivariable Feedback Design : by J. M. Maciejowski (Addison-Wesley, Wokingham, 1989) , 1991 .

[36]  J. How,et al.  Connections between the Popov Stability Criterion and Bounds for Real Parameter Uncertainty , 1993, 1993 American Control Conference.

[37]  M. Safonov,et al.  Real/Complex Km-Synthesis without Curve Fitting , 1993 .

[38]  A. Packard,et al.  Linear matrix inequalities in analysis with multipliers , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[39]  Dennis S. Bernstein,et al.  Extensions of mixed-µ bounds to monotonic and odd monotonic nonlinearities using absolute stability theory† , 1994 .