Miniaturized Wideband Metasurface Antennas

The single- and dual-layer metasurfaces are proposed to miniaturize a low-profile wideband antenna. The single- and dual-layer metasurfaces consist of one and two square patch arrays, respectively, both supported by grounded dielectric substrate to form the waveguided metamaterials. After retrieving the effective refractive index along the propagation direction in the waveguided metamaterial, the effective propagation constant is subsequently derived to initially estimate the resonant frequencies of the dual-mode antenna. With the increased effective refractive index, both the proposed antennas realize the gain greater than 6.5 dBi over the bandwidth of ~30% with a reduced radiating aperture of <inline-formula> <tex-math notation="LaTeX">$0.46\lambda _{0} \times 0.46\lambda _{0}$ </tex-math></inline-formula> and a thickness of <inline-formula> <tex-math notation="LaTeX">$0.06\lambda _{0}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$\lambda _{0}$ </tex-math></inline-formula> is the free-space wavelength at 5.5 GHz). Moreover, the dual-layer metasurface provides more freedom to increase the effective refractive index with achievable gap widths compared with the single-layer metasurface.

[1]  D. Pozar,et al.  Design of wideband circularly polarized aperture-coupled microstrip antennas , 1993 .

[2]  K. Luk,et al.  Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna , 1997 .

[3]  I. Gupta,et al.  Effect of mutual coupling on the performance of adaptive arrays , 1983 .

[4]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[5]  Wenbin Dou,et al.  A Broadband Proximity-Coupled Stacked Microstrip Antenna With Cavity-Backed Configuration , 2011, IEEE Antennas and Wireless Propagation Letters.

[6]  Qiang Cheng,et al.  Increasing the Bandwidth of Microstrip Patch Antenna by Loading Compact Artificial Magneto-Dielectrics , 2011, IEEE Transactions on Antennas and Propagation.

[7]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[8]  L. Bernard,et al.  Wideband Antenna in Cavity Based on Metasurfaces , 2016, IEEE Antennas and Wireless Propagation Letters.

[9]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[10]  Xianming Qing,et al.  Metamaterial-Based Low-Profile Broadband Mushroom Antenna , 2014, IEEE Transactions on Antennas and Propagation.

[11]  David R. Smith,et al.  Gradient index circuit by waveguided metamaterials , 2009 .

[12]  X. Y. Zhang,et al.  A Low-Profile High-Gain and Wideband Filtering Antenna With Metasurface , 2016, IEEE Transactions on Antennas and Propagation.

[13]  Xianming Qing,et al.  Metamaterial-Based Low-Profile Broadband Aperture-Coupled Grid-Slotted Patch Antenna , 2015, IEEE Transactions on Antennas and Propagation.

[14]  Xianming Qing,et al.  60-GHz Thin Broadband High-Gain LTCC Metamaterial-Mushroom Antenna Array , 2014, IEEE Transactions on Antennas and Propagation.

[15]  Xianming Qing,et al.  Effect of mutual coupling on Ka-band circularly polarized beam scanning antenna array , 2016, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI).

[16]  Jian Li,et al.  Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna , 2016 .

[17]  Huiqing Zhai,et al.  AMC-Loaded Wideband Base Station Antenna for Indoor Access Point in MIMO System , 2015, IEEE Transactions on Antennas and Propagation.

[18]  Y. Chow,et al.  Broadband microstrip patch antenna , 1998 .

[19]  P. Hall,et al.  Probe compensation in thick microstrip patches , 1987 .

[20]  Erik G. Larsson,et al.  Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays , 2012, IEEE Signal Process. Mag..

[21]  F. Croq,et al.  Stacked slot-coupled printed antenna , 1991, IEEE Microwave and Guided Wave Letters.

[22]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[23]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .