A Branch-and-cut Algorithm for Integer Bilevel Linear Programs

We describe a rudimentary branch-and-cut algorithm for solving integer bilevel linear programs that extends existing techniques for standard integer linear programs to this very challenging computational setting. The algorithm improves on the branch-and-bound algorithm of Moore and Bard in that it uses cutting plane techniques to produce improved bounds, does not require specialized branching strategies, and can be implemented in a straightforward way using only linear solvers. An implementation built using software components available in the COIN-OR software repository is described and preliminary computational results presented.

[1]  Robin Lougee,et al.  The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community , 2003, IBM J. Res. Dev..

[2]  Richard D. Wollmer,et al.  Removing Arcs from a Network , 1964 .

[3]  Stephan Dempe,et al.  Discrete Bilevel Optimization Problems , 2001 .

[4]  J. Bard,et al.  An algorithm for the discrete bilevel programming problem , 1992 .

[5]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[6]  Johannes O. Royset,et al.  Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem , 2007, INFORMS J. Comput..

[7]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[8]  Jacqueline Morgan,et al.  Weak via strong Stackelberg problem: New results , 1996, J. Glob. Optim..

[9]  J. C. Smith,et al.  Algorithms for discrete and continuous multicommodity flow network interdiction problems , 2007 .

[10]  Alan W. McMasters,et al.  Optimal interdiction of a supply network , 1970 .

[11]  Jonathan F. Bard,et al.  A Branch and Bound Algorithm for the Bilevel Programming Problem , 1990, SIAM J. Sci. Comput..

[12]  Ue-Pyng Wen,et al.  Algorithms for solving the mixed integer two-level linear programming problem , 1990, Comput. Oper. Res..

[13]  David L. Woodruff,et al.  Heuristics for Multi-Stage Interdiction of Stochastic Networks , 2005, J. Heuristics.

[14]  Jeff T. Linderoth,et al.  Reformulation and sampling to solve a stochastic network interdiction problem , 2008, Networks.

[15]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[16]  L. N. Vicente,et al.  Descent approaches for quadratic bilevel programming , 1994 .

[17]  W. C. Turner,et al.  Optimal interdiction policy for a flow network , 1971 .

[18]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[19]  David P. Morton,et al.  Models for nuclear smuggling interdiction , 2007 .

[20]  R. Lougee-Heimer,et al.  The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community , 2003 .

[21]  Jonathan F. BARD,et al.  Convex two-level optimization , 1988, Math. Program..

[22]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[23]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[24]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..