Faster Lyndon factorization algorithms for SLP and LZ78 compressed text

We present two efficient algorithms which, given a compressed representation of a string w of length N, compute the Lyndon factorization of w. Given a straight line program (SLP) S of size n that describes w, the first algorithm runs in O ( n 2 + P ( n , N ) + Q ( n , N ) n log ź n ) time and O ( n 2 + S ( n , N ) ) space, where P ( n , N ) , S ( n , N ) , Q ( n , N ) are respectively the pre-processing time, space, and query time of a data structure for longest common extensions (LCE) on SLPs. Given the Lempel-Ziv 78 encoding of size s for w, the second algorithm runs in O ( s log ź s ) time and space.

[1]  Joseph Gil,et al.  A Bijective String Sorting Transform , 2012, ArXiv.

[2]  Hideo Bannai,et al.  Dynamic index, LZ factorization, and LCE queries in compressed space , 2015, ArXiv.

[3]  Hideo Bannai,et al.  Efficient Lyndon Factorization of Grammar Compressed Text , 2013, CPM.

[4]  Michael A. Bender,et al.  The Level Ancestor Problem Simplified , 2002, LATIN.

[5]  Wojciech Rytter,et al.  Almost-optimal fully LZW-compressed pattern matching , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[6]  Jean Pierre Duval,et al.  Factorizing Words over an Ordered Alphabet , 1983, J. Algorithms.

[7]  Ayumi Shinohara,et al.  Detecting regularities on grammar-compressed strings , 2015, Inf. Comput..

[8]  Costas S. Iliopoulos,et al.  Parallel RAM Algorithms for Factorizing Words , 1994, Theor. Comput. Sci..

[9]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[10]  Hideo Bannai,et al.  Converting SLP to LZ78 in almost Linear Time , 2013, CPM.

[11]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .

[12]  Hideo Bannai,et al.  Faster Lyndon Factorization Algorithms for SLP and LZ78 Compressed Text , 2013, SPIRE.

[13]  Maxime Crochemore,et al.  Fast parallel Lyndon factorization with applications , 1995, Mathematical systems theory.

[14]  Manfred Kufleitner On Bijective Variants of the Burrows-Wheeler Transform , 2009, Stringology.

[15]  Pawel Gawrychowski Tying up the loose ends in fully LZW-compressed pattern matching , 2012, STACS.

[16]  Jacques-Olivier Lachaud,et al.  Lyndon + Christoffel = digitally convex , 2009, Pattern Recognit..

[17]  Tetsuo Shibuya Constructing the Suffix Tree of a Tree with a Large Alphabet , 1999, ISAAC.